“Nylon”-Digesting Bacteria are Almost Certainly Not a Modern Strain

This marine bacterium has the ability to digest nylon waste products, despite the fact that it doesn’t live in an environment that contains nylon waste products. (click for credit)

Evolutionists are fond of stating “facts” that aren’t anywhere near factual. For example, when I was at university, I was taught, as fact, that bacteria evolved the genes needed to resist antibiotics after modern antibiotics were made. As with most evolutionary “facts,” this turned out to be nothing more than wishful thinking on the part of evolutionists. We now know that the genes needed for antibiotic resistance existed in the Middle Ages and back when mammoths roamed the earth. They have even been found in bacteria that have never been exposed to animals, much less any human-made materials.

Of course, being shown to be dead wrong doesn’t produce any caution among evolutionists when it comes to proclaiming the “evidence” for evolution. When Dr. Richard Lenski’s Long Term Evolution Experiment (LTEE) produced bacteria that could digest a chemical called “citrate” in the presence of oxygen, it was hailed as definitive “proof” (a word no scientist should ever use) that unique genes can evolve as a result of random mutation and selection. Once again, that “fact” was demonstrated to be wrong in a series of experiments done by intelligent design advocates. They showed that this was actually the result of an adaptive mutation, which is probably a part of the bacterial genome’s design.

Recently, I learned about an impressive genetic study by young-earth creationists Sal Cordova and Dr. John Sanford. It lays waste to another evolutionary “fact” I was taught at university: the recent evolution of nylon-digesting bacteria. The story goes something like this: In 1975, Japanese researchers found some bacteria, which are now charmingly named Arthrobacteria KI72, living in a pond where the waste from a nylon-producing factory was dumped. The researchers found that this strain of bacteria could digest nylon. Well, nylon wasn’t invented until 1935, and there would be no reason whatsoever for a bacterium to be able to digest nylon before it was invented. Thus, in a mere 40 years, a new gene had evolved, allowing the bacteria to digest something they otherwise could not digest.

Of course, we now know that this story isn’t anywhere close to being true.

Continue reading

Print Reading versus Digital Reading: Which Produces Better Comprehension?

I saw this Science Alert article come across my Facebook feed a few days ago, and I read it with interest. Written by two researchers from the University of Maryland, it makes some pretty strong statements about the effectiveness of reading a digital article compared to a print article. Essentially, the researchers say that for specific kinds of articles, students’ comprehension is better if the article is read in print form as opposed to digital form. They make this statement based on a review of the studies that already exist as well a study they published two years ago. While I think they are probably correct in their assessment, I am struck by how small the difference really is.

For the purpose of this article, I will concentrate on their new study. In their Science Alert article, they refer to it as three studies, but it is published as a single paper. In the study, they had 90 undergraduate students who were enrolled in human development and educational psychology courses read a total of four articles: two digital and two in print. Two of them were newspaper articles and two were excerpts from books. They were all roughly the same length (about 450 words). They dealt with childhood Autsim, ADHD, Asthma, and Allergies. Presumably, all of those topics would be of interest to the students, given the classes in which they were enrolled.

Before they did any reading, the students were asked to assess themselves on their knowledge of the four topics about which they would be reading. They were also asked which medium they preferred to read: digital or print. They were also asked about how frequently they used each medium. They were then asked to read the articles, but the order in which the articles were read changed from student to student. Some would switch between digital and print, while others would read the first two in one medium and then the second two in the other medium. That way, any effect from switching between the media would not be very strong.

After each reading, students were asked to identify three things: the main idea of the article, its key points, and any other relevant information that they remembered from the article. The researchers had asked the authors of the articles these same questions as well as two independent readers. Those were considered the correct answers. Two trained graders independently compared the students’ answers to the correct answers, and the grades they assigned were in agreement 98.5% of the time. For the 1.5% of the time they didn’t agree, they then discussed the grading and came to a mutual agreement.

After all four readings and tests, the students were then asked in which medium they think they performed best. As you will see, that’s probably the most interesting aspect of the study.

Continue reading

Will Scientists Resurrect the Woolly Mammoth?

Model of a woolly mammoth at the Royal BC Museum in Canada. (click for credit)

One of my former students sent me an article from The Telegraph, a news outlet in the UK. The headline reads:

Woolly mammoth will be back from extinction within two years, say Harvard scientists

The article was written in February of 2017, so the student wanted to know if there would really be living woolly mammoths next year. The answer, of course, is absolutely not. This article is just another example of how many “science journalists” understand neither science nor journalism. Nevertheless, the actual scientific story is interesting, even though it isn’t nearly as sensational as what is indicated in The Telegraph‘s article, or articles found on other sites, such as here and here.

These articles are attempting to report on the Woolly Mammoth Revival Project, which is headed by Harvard professor Dr. George Church. As its website indicates, the goal is not to bring back the identical mammoth species again. Instead, its goal is to create some kind of elephant/mammoth hybrid that can live in colder climates. Why would it want to do that? For ecological engineering.

At some time in the past, woolly mammoth herds (and herds of other cold-adapted animals) roamed what are now the evergreen forests in the northern latitudes. This kept the growth of evergreens in check, making those areas more like grasslands. In addition, the mammoth herds would pack down and scrape away snow. Without this “land reshaping,” snow insulates the soil below, reducing the depth to which it freezes. As the deeper soil thaws, it releases greenhouse gases, and the worry is that those released greenhouse gases will accelerate global warming, aka “climate change.” Now please note that actual data indicate thawing soil will reduce greenhouse gases in the atmosphere, but most “climate change” alarmists aren’t interested in the data.

In the end, then, the Woolly Mammoth Revival Project hopes to populate the north with cold-adapted, elephant-like animals that will once again turn the northern evergreen forests into grasslands, packing down and scraping away the snow as they roam.

Continue reading

Death and Transformation

From left to right, Robert Kaufmann, JJ Brannon, yours truly, and John Ashmead.

I have to warn you. This post is different from the normal fare you will find on this site. It represents more of an unfinished thought than an argument or an analysis. However, I want to share this unfinished thought with you, because I can’t help but think that it might be important, at least in some way.

This past weekend, I attended a memorial service and wake for a man who was taken from this earth far too soon: James Jerald (JJ) Brannon. I met JJ at a science fiction convention that I speak at nearly every year. He was the cousin and dear friend of the man who invited me to participate in the conference, and he was also a speaker at the conference. In fact, we did several panel discussions together over the years, such as the one pictured above. That particular panel was about the diseases we might expect to see in the 21st century.

JJ was, in a word, unique. He had many awesome qualities, but he was, quite frankly, incredibly difficult to deal with. He often portrayed himself as an expert on subjects about which he was not well-educated, and unless you worked hard to hold him in check, he would monopolize any conversation he was a part of. He also went on and on and on and on and on when a subject was very important to him.

Now don’t get me wrong. JJ was incredibly difficult to deal with, but he was also an amazing friend. I genuinely enjoyed seeing him, and I was truly fond of him. Also, he loved me and his other friends (and his family) fiercely. However, after spending a lot of time with him, I often found myself getting annoyed with him. His cousin (the friend who introduced us) often felt the same way. One thing he would often complain about is that when JJ called, it was never a short conversation. As I said, JJ could go on and on and on, especially when a subject really interested him.

When I went to his memorial service, I wasn’t quite sure what to expect. What would people say about this wonderful but annoying man?

Continue reading

Study of Mice Highlights the “Junk DNA” Myth

Junk DNA is a crucial to evolutionary theory, despite the fact that it most likely doesn’t exist to any significant extent.

The concept of “junk DNA” is crucial to evolutionary theory. For example, the “gold standard” of evolutionary simulations doesn’t produce any evolution unless at least 85% of the simulated DNA is junk. This is why so many evolutionists are fighting against the straightforward conclusions of the ENCODE series of studies, which indicate that at least 80% of the human genome is functional. Dr. Dan Graur, for example, has famously said that if ENCODE is right, then evolution is wrong.

As is the case with most evolution-inspired ideas, the more we learn about the natural world, the more it becomes obvious that there is very little “junk DNA” in nature. A recently-published study of gender in mice highlights this fact. In the study, an international collaboration of scientists examined the development of sexual characteristics in mice. As you probably already know, in mammals there is a pair of chromosomes referred to as sex chromosomes. If an individual has an X chromosome and a Y chromosome in that pair, he is a male. If the individual has two X chromosomes, she is a female.

But the development of the proper characteristics associated with each sex depends on what happens during embryonic development. For example, as a mammal embryo develops, it starts out producing ovaries. However, there is a gene on the Y chromosome called Sry. It produces a protein that controls the production of another protein, called SOX9. The SOX9 protein turns developing ovaries into testes. A male develops testes, then, because of the action of a gene on the Y chromosome. But as this latest study shows, there is more to it than that.

The scientists removed a small section of DNA from genetically-male mice. This section is found in what the authors refer to as a “gene desert,” a section of DNA that is devoid of genes. Nevertheless, when that small section of DNA was deleted, the genetically-male mice developed ovaries and female genitalia. Now please understand that the genes involved in the production and regulation of the SOX9 protein were not removed; only a small portion of what many would call “junk DNA” was removed. Nevertheless, without that section of DNA, the genetically-male mice did not produce enough SOX9 protein, so the ovaries continued to develop into ovaries, which then caused the production of female genitalia. As a result, the authors refer to this small section of DNA as a SOX9 “enhancer.” It enhances the production of SOX9 at just the right time, so the males develop the correct gender characteristics.

While the results of this study are fascinating, they are not surprising. After all, it has become more and more clear that the concept of “junk DNA” is a myth. As a result, it makes sense that even small sections of DNA have important functions, at least in certain stages of development or under certain conditions. The reason I am blogging about the study is because of something the lead author said in an article that was published on his institution’s website:

Our study also highlights the important role of what some still refer to as ‘junk’ DNA, which makes up 98% of our genome. If a single enhancer can have this impact on sex determination, other non-coding regions might have similarly drastic effects. For decades, researchers have looked for genes that cause disorders of sex development but we haven’t been able to find the genetic cause for over half of them. Our latest study suggests that many answers could lie in the non-coding regions, which we will now investigate further.

Indeed. As Dr. John Mattick so aptly put it more than a decade ago:

…the failure to recognise the implications of the non-coding DNA will go down as the biggest mistake in the history of molecular biology.

Observations about Second-Generation Homeschoolers

One of several second-generation homeschoolers I have met this year.

This is “convention season” for homeschoolers across the United States, so I have been traveling to several different homeschool conventions, giving talks and speaking individually with lots of homeschooling parents. In some ways, these conventions never change. Many of the talks that I give are on the same topics that I spoke about at homeschooling conventions more than 20 years ago: how to “teach” science at home, why it is best for most students to be homeschooled through high school, and the fact that homeschooling produces graduates who are, on average, significantly better university students. Obviously, the details of the talks change every few years, but the basic points do not.

In the same way, many of the questions I get from homeschoolers are the same year after year and convention after convention. My son is only in 7th grade but is about to start Algebra 1. Should he really take high school biology? (In general, the answer is “yes,” but it depends on the student’s ability to work independently and how he reacts to academic rigor.) If he does take biology in 7th grade, can it be included on the high school transcript? (Once again, the answer is “yes.” See this article for more details.) My daughter is very talented in ballet and wants to pursue it as a career, but it requires a lot of rehearsal time. What should I do? (If a professional says that she has real potential, then you should scale back her other academic courses so that she can pursue her talents. Don’t neglect her education; just pare it down to the basic essentials so that she can have more time to hone her craft).

At the same time, however, each year brings a few changes. Some of the conventions that used to be large and well-attended are either very small or nonexistent. Other conventions that didn’t exist many years ago are now large and well-attended. Lots of new curricula are available, giving homeschoolers a wealth of choices for how to meet their children’s educational needs. The people you see at homeschooling conventions are also becoming more and more diverse every year.

This year, I noticed a new difference. Most likely, the difference has been slowly growing over a period of many years, but after speaking at the California Homeschool Convention this past weekend, it struck me that this year, I have interacted with a lot of second-generation homeschoolers (homeschool graduates who are now homeschooling their own children).

Continue reading

Another Unsuccessful Attempt to Detect Dark Matter

This NASA image illustrates the fact that most astrophysicists think there is about four times as much dark matter as visible matter in the universe.

A couple of months ago, I wrote an article about a galaxy that has no “need” for dark matter. This is interesting, because most galaxies “need” dark matter to explain the motion of their stars. Based on the mass that is actually observed in most galaxies, the stars should not be moving the way that they do. Thus, scientists think there must be a lot of mass in those galaxies that cannot be seen (dark matter). To make their current theories work, scientists estimate that about 80-85% of the mass in the universe comes from dark matter. Since dark matter is thought to be so prevalent in the universe, scientists have tried to detect it directly, without any luck.

How do you detect something you can’t see? First, you have to have some idea of what you are looking for. Then, you design an experiment to see if what you think you might be looking for really exists. The most “promising” candidate for dark matter is a class of hypothetical particles called “weakly interacting massive particles” (WIMPs). These are particles that don’t interact with matter using the electromagnetic force. Since the electromagnetic force works via the exchange of photons, if a particle doesn’t use the electromagnetic force, it produces no light. Instead, WIMPs are thought to use only the gravitational force and the weak force, which works only at the subatomic level and is responsible for most of the natural radioactivity on planet earth.

Since all the matter we know of uses the electromagnetic force, WIMPs are obviously strange particles. However, they are allowed by the mathematics of the standard model of physics, which is why they are considered the most “promising” of the candidates for dark matter. How do scientist try to detect WIMPs? The most sensitive WIMP detector is called XENON1T, which is filled with liquid and gaseous xenon. The design of the detector allows scientists to identify electromagnetic interactions that occur between particles hitting the detector and the liquid xenon inside. They discard those interactions, and what’s left should be any interactions that use only the weak force. Those, of course, would be caused by the WIMPs.

The team of scientists using XENON1T reported their latest results at a seminar on May 28th, and so far, they have not seen a signal that is consistent with what is expected for WIMPs. I think their results argue strongly that WIMPs don’t exist, but that’s not the only explanation. The results could also mean that physicists don’t understand WIMPs as well as they thought, and these particles actually interact more weakly with matter than what the theories tell us.

Continue reading

NASA Has NOT Found the Building Blocks of Life on Mars

A “self-portrait” of the Curiosity rover on Mars: a composite of several images taken with the rover’s Hand Lens Imager.

The headlines are screaming it. NASA Mars rover discovers ‘building blocks’ for life: 3-billion-year-old organic matter, Curiosity Rover Finds Ancient ‘Building Blocks for Life’ on Mars, Building Blocks of Life Found on Mars, etc. etc. There’s only one problem. The building blocks of life were not found on Mars. I wish they had been. I think it would be awesome to find evidence of life on other planets besides earth. However, what NASA’s rover discovered on Mars wasn’t even close to the building blocks of life.

So what was really found on Mars? Not surprisingly, the title of the scientific paper that was published in the journal Science comes close to the truth:

Organic matter preserved in 3-billion-year-old mudstones at Gale crater, Mars

Now, of course, I think the “3-billion-year-old mudstones” is scientifically irresponsible, but notice the difference between the scientific article’s title and the title of the articles written by “science journalists.” There is no mention of life in title of the scientific article.

But wait a minute. Isn’t that just semantics? Doesn’t “organic” refer to chemicals that come from living things. Absolutely not! As I tell students in my elementary science book Science in the Industrial Age:

While organic chemicals are generally associated with living things, it is possible to make them from nonliving things…Scientists still use the terms “organic” and “inorganic” today to classify chemicals, but they do so based on the elements that make them up, not based on where they come from.

Now, of course, the news articles I linked above eventually get around to saying that it is possible for the molecules discovered on Mars to have come about without the presence of life. Even with that caveat, however, the news articles are still wrong, because the molecules discovered are not, in any way, the “building blocks of life.”

Continue reading

Study Demonstrates that Most Animal Species Came Into Existence at the Same Time?

Most of an animal’s DNA is in the nucleus of the cell, but there is DNA in the powerhouse of the cell, which is called the mitochondrion.

In a comment on a previous article, a reader informed me of a study that I had not seen. It was published in the journal Human Evolution and its results are consistent with the idea that 90% of all animal species came into being at roughly the same time. This is certainly not what the hypothesis of evolution would predict, so some creationists as well as some intelligent design advocates have presented the study as evidence against evolution. In my reply to the comment, I expressed skepticism, even though I would love for the conclusions of the study to be correct. Now that I have read the study itself, I am even more skeptical.

The authors of the study analyzed the DNA of many different species of animals. However, they did not look at the DNA found in the nucleus of the cell. That DNA, called nuclear DNA, is responsible for most of an organism’s genetically-defined traits. They looked at mitochondrial DNA, which is the small amount of DNA that is found in the mitochondrion, the structure that produces most of the energy that the cell ends up using. To give you an idea of how different mitochondrial DNA is from nuclear DNA, the nuclear DNA of a human being is over 3 billion base pairs long, while human mitochondrial DNA is just over 16,000 base pairs long. You don’t need to know what “base pairs” are to see that there is only a tiny, tiny amount of mitochondrial DNA in a human cell compared to nuclear DNA.

Now even though there isn’t a lot of mitochondrial DNA, some sections of it seem to be very characteristic of the species of animal from which the cell comes. For example, a 2016 study analyzed a section of mitochondrial DNA (called the COX1 gene) among different species of birds. It showed that the COX1 gene alone was enough to separate 94% of the birds into species. Similar studies indicate that the COX1 gene can separate other species of animals, so the sequence of the COX1 gene is often referred to as the DNA barcode of the animal. This is what the authors of the study I am discussing focused on.

Continue reading

The Final Mother/Daughter Comparison Between My Chemistry and Apologia’s Chemistry

In case you missed out on the first installment of this review, a mother and daughter have been comparing my chemistry course, Discovering Design with Chemistry, to Apologia’s chemistry course, Exploring Creation with Chemistry, 3rd Edition. This review came about because they had originally started using Apologia’s course, and it just wasn’t working for them. They started using my course, and it worked much better, as you can see in the previous installment as well as what you can read below. The comparison starts with the daughter’s perspective and ends with the mother’s perspective:

From the daughter’s perspective:

Last January, I wrote a comparison review for 3 modules of Apologia’s Exploring Creation, 3rd Edition, to 4 chapters of Dr. Wile’s Discovering Design with Chemistry. My overall view was that Apologia was very thrown together and confusing, while Discovering Design was more organized and enjoyable. In May of this year, I completed studying Dr. Wile’s Discovering Design with Chemistry, as well as reading over Exploring Creation; my original opinions remain the same as before. Though, there are a few more things I’d like to add in.

As I went through both texts, I discovered that the order of information and tone of writing is very important to how the student copes with the material. For example, Discovering Design is in conversational tone as if Dr. Jay himself were the one talking. He will often add in quick, funny or humorous things throughout the text especially when the topic starts getting heavy, which I find helps to release “chemistry stress.” Exploring Creation is also in a conversational tone, but it gets to be a bit confusing when a paragraph is giving an example using the pronoun “I,” and the student in this case has no idea who ‘I’ is.

In Discovering Design, Dr. Jay explains things to the point, builds on top of the material as chapters go on, and balances the difficulties of that material so that it doesn’t seem like too much. I can’t say any of this for Exploring Creation. While a few explanations are easy to understand, too often the book contains wordy paragraphs and unnecessary rules, and it’s difficult to grasp how any of the chemistry concepts taught are connected. In Discovering Design, you can’t wait to read the next section. In Exploring Creation, you can’t wait until you’ve finished the module.

I did come across a few frustrating things while studying Discovering Design. One was not being able to successfully complete experiments, because I couldn’t get the materials in the country where I live, and sometimes getting generally confused because, well, chemistry can sometimes be confusing. However, having said that, the experiments I was able to complete were excellent and helpful (For example experiment 10.4), the extra helps website helped overcome some of the confusion, and overall the course was really what I was expecting when I wanted to learn about Chemistry. I didn’t study Exploring Creation all the way through (On Your Owns and tests), but after just reading it, I don’t imagine a student would have a very good idea of the beauty of what chemistry really is; as Discovering Design does so well.

The last thing I can say is that Exploring Creation is like learning a bunch of mixed up chemistry facts, while Discovering Design is taking a thorough chemistry course.

S. White, student

From the mother’s perspective:

As we worked through Discovering Design, I found my thoughts were about the same regarding the teacher’s material. The fact that concepts are well-explained in the Discovering Design teacher’s manual helped a lot, as it has been a very long time since I have studied chemistry. Comparing the tests of the two texts, I especially noticed a difference in the weighting of the points for the test questions. In the Discovering Design tests, I felt there was a healthy balance between grading the math and grading the understanding of concepts, whereas Exploring Creation seemed to put too much weight on the math questions so that even if a student got everything right but two of the math questions, he could fail the test, which doesn’t seem to be right when a student has clearly mastered the concepts.

I would like to note here that Dr. Wile’s text is designed to take a normal school year, and as you can see, my daughter completed the entire text in 5 months. This was not because the text was too easy, but rather that my daughter dedicated 5 or 6 hours a day (and in some cases more) to chemistry in order to finish it before her graduation. I would not recommend this schedule to the average student.

L. White, teacher

1 2 3 4 5 6 90