In science, one of the most important things a hypothesis can do is make predictions that can be verified by experiment or observation. If a hypothesis makes predictions that are then confirmed by experiment or observation, its scientific value is high. The more confirmed predictions it makes, the more likely it is to be a good, scientific explanation for whatever phenomenon it is describing. However, if a hypothesis makes several predictions that are shown to by false by experiment or observation, its scientific value becomes questionable.
Dr. Cornelius Hunter has done an excellent job detailing many of evolution’s failed predictions. I have discussed a few on this blog as well (here, here, here, here, here, and here). Not surprisingly, as more and more research is being done, more and more evolutionary predictions are being falsified. The latest one involves bats and insects.
As most people know, bats have an amazing echolocation system that allows them to hunt in the dark. They send out high-frequency sound waves that bounce off anything in front of them. They receive the reflected sound waves, analyze them with sophisticated mathematics, and determine all sorts of useful information, such as the size, position, and speed of what’s in front of them. This amazing echolocation system allows bats to hunt and eat insects even when it is pitch black outside.
Well, it turns out that some insects are able to hear these high-frequency sound waves. This alerts them to the fact that a bat is hunting them, and they are then able to take evasive maneuvers. For many, many years, evolutionists have claimed that this kind of hearing in insects evolved after bats evolved. For example, a book that discusses the echolocation systems found in bats and dolphins says:1
The evolution of ultrasound sensitivity in nocturnal insects evolved in response to predation pressures exerted by echolocating bats.
Another evolutionary book makes a very similar statement:2
…before bats evolved…moths and other nocturnal insects owned the night sky, flitting about unmolested by predators. The appearance of bats forced them to evolve a novel antibat strategy – a way of hearing the echolocating calls of hunting bats, in effect a radar detector.
So evolution predicts that the high-frequency hearing in some insects arose after bats evolved, as a response to the bats’ new way of finding prey among the insects.
Like most evolutionary predictions, however, this turns out to be dead wrong.