Is Religion on the Decline in America?

Ruins of the Oxford Terrace Baptist Church in Christchurch, New Zealand. It was destroyed by earthquakes (click for credit)

The secularization thesis holds that the advance of science and modernization leads to a decline in religion. As a result, the more scientifically and technologically advanced a society becomes, the less religious it becomes. One of the strong proponents of this view was Dr. Charles Wright Mills. In his book, The Sociological Imagination (Oxford University Press, 1959), he wrote:

Once the world was filled with the sacred – in thought, practice, and institutional form. After the Reformation and the Renaissance, the forces of modernization swept across the globe and secularization, a corollary historical process, loosened the dominance of the sacred. In due course, the sacred shall disappear altogether except, possibly, in the private realm. (pp. 32-33)

There are many people who believe this, and they think that Europe provides a great example of how it happens. There are huge, magnificent cathedrals in Europe, which are a testimony to how influential Christianity once was. Today, however, many of those cathedrals do not serve as houses of worship. Instead, they are museums of history. Even the ones that are still functioning as houses of worship have tiny congregations that are dwindling year by year.

Despite what happened across Europe, I have always been skeptical of the secularization thesis. Mostly, that’s because science convinced me that there must be a Creator God, which then led me to Christianity. The more I teach science and do scientific research, the more I see the Hand of God in nature. In my mind, advances in science and technology strongly support Christianity. As a result, the secularization thesis makes no sense to me.

I was recently made aware of an article from two years ago that argues against the secularization thesis in the United States. As I read it, I couldn’t help but think that it applies to the world as a whole.

Continue reading

Why Do I Include God in My Science Texts?

13th-century illumination from the French Bible Moralisée, depicting Christ (who is God) creating the World.

I was asked that question a couple of days ago, but it wasn’t the first time. Over the years, several people have asked me why I write about God in my science textbooks. After all, science is about facts, while belief in God is about faith. As a result, science doesn’t belong in religious texts, and God doesn’t belong in science texts. That may sound reasonable in today’s world, but it is simply dead wrong. In addition, it demonstrates a shocking level of ignorance about the history of science. Nevertheless, it is a good question, and it deserves a detailed answer.

First, there is an obvious philosophical reason: God is the source of all that science studies, so it only makes sense to discuss Him in the context of studying His creation. Consider, for example, teaching a course on U.S. Law. Would you try to teach it without referring to the U.S. Constitution? Perhaps. Maybe there are law professors who do just that, but for me, I can’t imagine discussing U.S. law without discussing the source from which it comes. In the same way, I find it pointless to discuss science without discussing its source.

Second, there are practical reasons to discuss God while teaching students about science. If we emphasize the fact that the things we study as scientists are designed, we give students a superior way in which to view the natural world. Those who want to reject the idea of a Creator God will try to convince students that this world was “thrown together” by random chance. As a result, students get the idea that creation is full of shabby constructions. Of course, nothing could be further from the truth. The designs found in the natural world make our best technology look like garbage. This has led one desperate atheist to write:1

Biology is the study of complicated things that give the appearance of having been designed for a purpose.

Of course, a more reasonable evaluation of the data leads us to the conclusion that biology is the study of things that have been designed for a purpose.

This is very important, because when we understand that biology is the study of designed things, we don’t fall prey to misconceptions that hold back the progress of science. How many lives have been wasted because scientists looked at the primary cilium as a evolutionary vestige rather than an antenna designed to receive signals? How long did scientists delay a more detailed understanding of genetics because of the nonsensical notion of “junk DNA”? How many people needlessly suffer relapses of intestinal bacterial infections because of the silly idea that the appendix is a vestigial organ? A scientist who understands that the natural world is designed is simply better able to interpret what he or she is studying, since it is the more realistic view.

Finally, there is a spiritual reason to include God in science. As Nobel laureate Dr. Arthur Leonard Schawlow once put it:2

But the context of religion is a great background for doing science. In the words of Psalm 19, “The heavens declare the glory of God and the firmament showeth his handiwork.” Thus scientific research is a worshipful act, in that it reveals more of the wonders of God’s creation.

Ever since I became a Christian, science has been a worshipful act for me. There is no way I could write about this worshipful act without including the One who is being worshipped!

REFERENCES

1. Dawkins, R., The Blind Watchmaker, W.W. Norton & Company, New York, USA, p. 1, 1986.
Return to Text

2. Cosmos, Bios, Theos, Henry Margenau and Roy Abraham Varghese, ed., Open Court Publishing 1992, p. 106.
Return to Text

What’s Really Causing Coral Bleaching?

The soft coral colony at the center of the picture is bleached. The corals to the right are not. (click for credit)

Coral are amazing animals. They live in a mutualistic relationship with algae, giving the algae a safe home in exchange for some of the food that the algae make through photosynthesis. The variety of colors seen in a coral reef are a result of this relationship. However, coral sometimes expel their algae, turning white. This is called “coral bleaching,” and it generally happens when the water is warmer than usual. the Australian Marine Conservation informs us:

Coral bleaching is a global crisis, caused by increased ocean temperatures driven by carbon pollution.

This has become a common mantra in the “global warming is going to kill us all” movement, because coral reefs are so fundamentally important to the health of ocean ecosystems. Indeed, it has become so important that if you question what the global-warming alarmists say, it can lead to dire consequences.

Consider, for example, the case of Dr. Peter Ridd. Some of his colleagues at James Cook University published work indicating that Australia’s Great Barrier Reef was on the verge of collapse because of global warming. Dr. Ridd dared to question that narrative, pointing out the data that indicate there is nothing unusual about the bleaching events that have been occurring at the Great Barrier Reef and that the reef has about the same amount of healthy coral as it did back in 1985. For that transgression, he was fired. While a court has ruled the firing unlawful, the university plans to appeal the ruling. Regardless of what happens at appeal, it is clear that the firing was anti-science. Criticism of data, even data related to sacred cows such as global warming, is the hallmark of good science. To squelch such criticism is a direct assault on the progress of science.

Of course, the real question is whether or not global warming is a threat to the oceans’ coral reefs. The answer remains unclear, but the balance of the evidence indicates that it is not. For example, one study of the Great Barrier Reef shows that bleaching events were more common several hundred years ago. According to that study, bleaching events hit their peak in the 1850s. There is also some indication that bleaching is an adaptive mechanism and is not necessarily bad for the health of a coral reef.

Continue reading

Something I (and Most Scientists) Have Taught for Many Years is Probably Wrong!

One of the problems that science textbook authors face is the fact that science is constantly changing. As we learn more about the Creator’s handiwork, we find that the science we have taught as fact is actually incorrect. Sometimes, this is because the experiments upon which those facts are based were in error. Sometimes, it’s because our interpretations of those experiments were in error. Sometimes, it’s a result of making conclusions that go beyond what the experiments actually tell us. The practical upshot of all this is that some of the things you are reading in your science textbooks are wrong.

I recently found out that something I (and most other authors) have taught about DNA is probably wrong. Most people know that DNA is a double helix. As shown in the illustration above, those two helixes wind around each other, with the information-bearing units (called nucleotide bases) inside. In order for cells to use the information in DNA, those helixes have to be separated so that the sequence of the nucleotide bases can be read. That means the helixes need to be held together when DNA is not being used, and then they must be separated when it is time for the cell to read the DNA.

How does that happen? Well, according to most textbooks (including mine), it is because the nucleotide bases form hydrogen bonds with one another. Hydrogen bonds are weaker than true chemical bonds, but they can hold things together. As I say it in my textbook, Exploring Creation with Biology, 2nd Edition:

…the attraction between the atoms in hydrogen bonding is about 15% as strong as the attraction between two atoms that have a true chemical bond linking them. Thus, the hydrogen bonds in DNA are strong enough to keep the two chains together in a double helix, but they are significantly weaker than a true chemical bond. Since they are weaker than a true chemical bond, it is rather easy for the two helixes in DNA to unravel.

This sounds great, but a recent study indicates that it’s probably not true. If nothing else, it doesn’t tell the entire story.

Continue reading

And Now For Something Completely Different

A while back, I posted a very creative test answer given to me by one of my former students. I want to post something else that she wrote. It’s not what you normally see on this blog, but I enjoyed it immensely. I hope you do, too.

A Tale of Two 19th Century Gentleman Scientists Living in the 21st Century in Six Short Scenes


By Eden Cook

~January 21, 20—~

It has been said, though by whom I cannot say, that every good story starts with a bad decision, and that is precisely what a certain Mr. Tobias Newton was thinking he had made in accepting the chairmanship of the S. O. O. S. S. Like so many societies of its kind, the Something-or-other Science Society had been founded with the best of intentions. It was to be a society for the local pursuers of all branches of scientific knowledge to aid one another by exchanging ideas, hypotheses, and data, and for some time this was what it had been. In past times Newton had brought those who were flagging in their scientific zeal to the society meetings and it almost never failed to invigorate their studies, but now it had fallen into disrepair due to that same lack of zeal on the part of its leading members. It could now be best described as a meeting of rather glum persons, mostly men and mostly chemists, who came together to complain of the weather, their health, and the lack of available Cesium. Newton had hoped to be able to revive the society that he had enjoyed so much in the past by accepting the position of chairman, but he found that instead of influencing the members for good, their persistent pessimism was wearing away his resolve.

Hence it was a rather dejected Mr. Tobias who arrived back at his extensive Edwardian abode. It was a house with that strange sort of charm peculiar to antiquated buildings which have not yet been allowed to fall into disrepair. But to one so accustomed to its premises as Newton, these finer qualities were for the moment swallowed by his many other preoccupations. Not the least of these other worries was the guests he had coming to stay with him. His cousin, Rutherford—a chemist—was coming to visit Newton later that week. In general Newton felt inept at entertaining company, but he was always at his ease around his cousin. The trouble was not (as it so often was) Rutherford, but his much younger lab assistant who simply went by Tertius. Newton knew next to nothing about the young scientist, but in all probability he would be a sorry addition to their customary twosome. But whether he really was or not, Newton needed to try to make his cousin’s assistant feel welcome, and we will leave him to attempt that very thing.

Continue reading

This “Junk DNA” Confirms a Creationist Prediction!

How DNA is arranged in the nucleus of a cell when it’s not in the process of reproducing. (click for credit)

When a scientist refuses to see the design that is so obvious in nature, it can lead to all sorts of incorrect conclusions. Consider, for example, transposable elements in DNA. Often called “transposons,” they jump around in an organism’s genome. In other words, they are in different places in different cells of the same organism. Those who have their naturalist blinders on initially thought that they were useless – part of the “junk DNA” that represents all the evolutionary “flotsam and jetsam” that has accumulated over hundreds of millions of years. Dr. Leslie Pray, writing in Nature Education, puts it this way:

Transposable elements (TEs), also known as “jumping genes” or transposons, are sequences of DNA that move (or jump) from one location in the genome to another. Maize geneticist Barbara McClintock discovered TEs in the 1940s, and for decades thereafter, most scientists dismissed transposons as useless or “junk” DNA. McClintock, however, was among the first researchers to suggest that these mysterious mobile elements of the genome might play some kind of regulatory role, determining which genes are turned on and when this activation takes place.

Of course, we now know that these supposedly useless stretches of DNA have widespread functionality throughout the genome. However, a recent study demonstrated that one set of transposable elements (the HERV-H subfamily) has a particularly interesting function, which indicates that a creation scientist’s prediction I wrote about nine years ago has been confirmed.

Continue reading

Cool Video of a Soft Dinosaur Cell

A dinosaur fossil (left) and a cell that came from a different part of the same fossil assemblage (right)
(Images copyright Mark Armitage. Click for source)

A couple of years ago, I wrote about the remarkable dinosaur research being done by microscopist Mark Armitage. The story discussed two scientific articles he wrote about finding soft dinosaur cells in a Triceratops fossil. Well, Armitage is continuing his research at the Dinosaur Soft Tissue Research Institute in the state of Washington. The pictures above represent some new results: soft bone cells from a Nanotyrannus fossil.

Now whether or not there is such a thing as a Nanotyrannus is actually a matter of debate. Some paleontologists think the fossils are really from a juvenile Tyrannosaurus. So it might be a different species, or it might just be a juvenile form of an already-known species. Regardless of which is correct, it is well accepted that these fossils have been found in Cretaceous rock that is supposed to be about 65 million years old. It’s hard to understand how any cellular material could have survived for that long without being fossilized. Nevertheless, the cells that Armitage has extracted from the fossil are soft, as shown in the video below.

Of course, it is always possible that the cell is not really from the dinosaur. However, that’s a bit hard to believe. It came from a bone, and it has all the visual characteristics of an osteocyte, which is a bone cell. I can’t think of any possible contaminant that has the size, shape, and filipodial extensions that you see in the video. Also, remember that Armitage previously extracted soft bone cells from a Triceratops fossil. Thus, if this is a contaminant, it must be common to two completely separate fossils (or somehow introduced by Armitage’s process, which once again, is hard to believe).

I think it is reasonable to conclude that Armitage is, indeed, isolating soft dinosaur bone cells. He plans to make a presentation at Lower Columbia College in Longview Washington, on October 5th 2019, at 7 pm. In that presentation, it looks like he will also discuss how the soft tissues from which his cells are isolated react to stains for DNA and RNA. I won’t be able to make it, but I sincerely hope that it is recorded and that Armitage eventually writes another article about his continuing research!

Large Study Indicates Genetics Has Little Influence on Sexual Orientation

I don’t normally write on topics like this, because studying human behavior is a tricky subject. There are all sorts of different explanations for a given behavioral characteristic in people, and trying to isolate a specific cause is difficult, to say the least. However, there has been a lot of news about the recent study that concluded there is “no gay gene,” and I have gotten several questions about it. As a result, I decided to read the study and share my thoughts.

First of all, it’s not surprising that there is no gay gene. In fact, researchers have said that for years. If there were a single gene that heavily influenced whether or not a person is homosexual, it would have been easy to find and discovered years ago. Also, even something as simple as the color of your eyes is governed by at least eight different genes. Thus, to think that something as complex as sexual behavior is governed by one gene is naive at best. So that specific result of the study is not even interesting, much less newsworthy. What makes the study newsworthy is its size, its scope, and the fact that its conclusions are very weak.

The study is massive in two ways. First, the main study looked at 477,522 individuals, but then it repeated the study using three smaller datasets that were composed of 15,142 individuals. Whenever you study people, the more people you have, the less uncertain your results will be. Thus, the sheer number of individuals in the study makes it important. Second, the study compared the entire genomes of the individuals. In other words, they looked at all the DNA found in the nucleus of the individuals’ cells. That’s a massive amount of data for a massive number of people!

What it tried to do is compare single nucleotide polymorphisms (SNPs) among the individuals to see if they could be correlated with sexual behavior. If you aren’t familiar with the term, SNPs are the most common variation between sets of human DNA. Genetic information comes in sequences of DNA building blocks called nucleotide bases. There are roughly three billion nucleotide bases in one strand of human DNA. An SNP is a change in one of those nucleotide bases.

Continue reading

Excessive Screen Time Linked to Poor Psychological Health in Children and Adolescents

A child playing with an Apple iPad
(click for credit)

Screens are everywhere. It’s very hard to avoid them. However, many health organizations recommend that parents limit the amount of screen time children and adolescents have. First, the health effects of excessive screen time have been well documented. Children who watch TV, computer, phone, and tablet screens a lot don’t exercise much. That leads to some very poor health outcomes, such as obesity. Second, a recent study indicates that there are significant negative psychological effects associated with a lot of screen time.

Psychological research is difficult for many reasons. Whenever you deal with people, you have to try to control for all sorts of variables that affect each subject, and those variables are often significantly different in different subpopulations. In addition, some of outcome measures are subjective, at best. As a result, psychological studies often have conflicting results. However, this one seems to do a good job getting over those hurdles. It contains a lot of subjects (40,337) who were randomly selected, leading to an averaging-out of at least some of the variables. Also, it used the results of the National Survey of Children’s Health (NSCH), which was done in 2016. This survey was given to the people who know the subjects best: their caregivers. It also asks a lot of fairly objective mental health questions, such as whether or not the subject was ever diagnosed with anxiety or depression.

The survey also asked the subjects’ caregivers the following questions:

a) On an average weekday, about how much time does [child’s name] spend in front of a TV watching TV programs, videos, or playing video games?

b) On an average weekday, about how much time does [child’s name] spend with computers, cell phones, handheld video games, and other electronic devices, doing things other than schoolwork?

The researchers added the results of both questions to get the total amount of screen time the subject has each weekday. They then correlated that number to the mental-health-related questions on the survey. The results were rather alarming.

Continue reading

Another High-Profile Defection from Darwinism

Yale computer science professor Dr. David Gelernter (click for source)

The High Priests of Science continue to assure us that there is no debate when it comes to the validity of evolution as an explanation for the history of life. As the National Academy of Sciences says:

…there is no debate within the scientific community over whether evolution occurred, and there is no evidence that evolution has not occurred. Some of the details of how evolution occurs are still being investigated. But scientists continue to debate only the particular mechanisms that result in evolution, not the overall accuracy of evolution as the explanation of life’s history.

The problem, of course, is that such dogmatic statements are not consistent with the data that is supposed to guide scientific inquiry. When people honestly evaluate such data, many see how wrong the High Priests of Science are. Nearly two years ago, for example, I wrote about a world-renowned paleontologist who put up a display in his museum showing how there was no controversy about evolution. The problem, of course, is that he had never investigated all the data. When he got up the courage to actually read books written by scientists who point out the many flaws in evolutionary thinking, he ended up being convinced by the data and defected away from Darwinism. This cost him his job, but at least his scientific integrity remained intact.

Now there is another addition to the list of high-profile academics who had the courage to investigate all the data. His name is Dr. David Gelernter, and he is a professor of computer science at Yale University. In May of this year, he wrote a very interesting article for The Claremont Institute. I encourage you to read the article in its entirety, but I cannot help but add a bit of “color commentary.”

Continue reading

1 2 3 4 99