One of the main ways to test the validity of a scientific hypothesis is to use that hypothesis to make predictions. If those predictions are confirmed by the data, more weight is added to the validity of the hypothesis. If those predictions are falsified by the data, the validity of the hypothesis should be called into question. When it comes to the hypothesis of evolution (in the flagellate-to-philosopher sense), prediction after prediction has been falsified (see here, here, here, here, and here, for example). A recent study published in the Proceedings of the National Academy of Sciences adds to the very long list of failed evolutionary predictions.
In this case, the researchers were studying the phenomenon of apoptosis, which is programmed cell death. In an organism that is composed of several cells, it is important to have a mechanism by which cells that are diseased, very old, or otherwise unstable can be removed. That way, they won’t harm the rest of the organism. This is one of the purposes of apoptosis. When a cell recognizes that it is a potential threat to the organism as a whole, it can actually release protein-destroying chemicals that cause it to kill itself.
Not surprisingly, the process by which apoptosis occurs is incredibly complex. Nevertheless, scientists have made a lot of progress in understanding it. We now know that there are specialized enzymes that start the process. They belong to a group called the TNF receptor-ligand superfamily. In this superfamily, there are TNF ligands (collectively called TNFSF) and receptors (collectively called TNFRSF). When the ligands bind to the receptors, a process starts that can either cause the cell to override its programmed cell death or continue on with it, depending on other chemical signals that are taking place within the organism.
Now don’t get lost in the terminology here. The idea is that multicelled organisms must have a way to get rid of cells that might be bad for the organism as a whole. One way this happens is for special chemicals from a group called TNFSF to bind to other special chemicals from a group called TNFRSF. This activates a process that determines whether the cell should continue to be a part of the organism or kill itself for the good of the organism.
The researchers who published this study decided to analyze apoptosis in one of the more “primitive” organisms on the planet, a species of coral called Acropora digitfera. According to the researchers, corals like this species have been around for 550 million years, so it should be a good representative of some of the earliest animals that ever existed on the planet. Given that assumption, the researchers thought that the apoptosis process in corals should be rather simple – at least a lot less complicated than what we see in the “higher” animals such as flies, birds, and people. Surprisingly, they found the exact opposite.
Continue reading “Yet Another Failed Evolutionary Prediction”