Has Voyager 1 Left The Solar System?

This is an artist's conception of Voyager 1 traveling through space. (public domain image)

The earth and the other seven planets (in case you didn’t know, Pluto is no longer considered a planet) orbit the sun, which is a very special star. Nevertheless, it is just one of probably more than a septillion (1,000,000,000,000,000,000,000,000) stars in the universe. Each of these stars has a gravitational field, and at least several of them have planets orbiting around them. In other words, each star has its own solar system.

Well, at some point, our solar system has to end and interstellar space (the space between the solar systems of different stars) has to begin. But where, exactly, is that? The robotic spacecraft known as Voyager 1 and Voyager 2 are trying to answer that question. They were both launched into space in 1977 (Voyager 2 was launched 16 days earlier than Voyager 1), and they have been traveling away from earth ever since. While they still have fuel, they don’t use it to propel themselves forward. Where they are, the sun’s gravitational field is so weak that they experience essentially no resistance to their travel, so they just keep traveling with the speed their engines gave them long ago. The only thing they use their fuel for is to change orientation, a process called “attitude adjustment.”

Even though Voyager 1 was launched later, it picked up a bit more speed than Voyager 2, so it is farthest away from the earth and the sun. As of the time this article was written, Voyager 1 was more than 18,800,720,000 kilometers (11,682,230,000 miles) from the sun. That’s a long way, but is it far enough to be considered out of our solar system? The surprising answer is that we aren’t really sure!

Continue reading “Has Voyager 1 Left The Solar System?”

Is it “hilarious” or “an exclamation mark” on an “already-clear conclusion”?

Dr. Richard Lindzen (left) and Dr. Michael Mann (right) have radically different views of the latest IPCC report. (Click for credit.)

The 2013 report from the Intergovernmental Panel on Climate Change (IPCC) has been released. The final version of the Summary for Policymakers is out, and the complete report is also available. This report is supposed to help us understand what the scientific community says about climate change and whether or not people are responsible for all or part of it. The report says that warming of the climate system is “unequivocal” and that “Human influence on the climate system is clear.” Unfortunately, the scientific community seems rather split on whether or not the IPCC report is reasonable.

Dr. Richard Lindzen, Alfred P. Sloan Professor of Meteorology at MIT, had this to say about the report:

I think that the latest IPCC report has truly sunk to level of hilarious incoherence. They are proclaiming increased confidence in their models as the discrepancies between their models and observations increase…in attributing warming to man, they fail to point out that the warming has been small, and totally consistent with there being nothing to be alarmed about. It is quite amazing to see the contortions the IPCC has to go through in order to keep the international climate agenda going.

On the other hand, Dr. Michael E. Mann, director of the Earth System Science Center at Pennsylvania State University, wrote:

Climate change is real and caused by humans, and it continues unabated. We will see far more dangerous and potentially irreversible impacts in the decades ahead if we do not choose to reduce global carbon emissions. There has never been a greater urgency to act than there is now. The latest IPCC report is simply an exclamation mark on that already-clear conclusion.

Both Lindzen and Mann are recognized experts in climate science, they both have a long list of impressive contributions to the field, and they have radically different opinions when it comes to the IPCC report. Which one of them is closest to being correct?

Continue reading “Is it “hilarious” or “an exclamation mark” on an “already-clear conclusion”?”

“Oil” in Weeks, Not Millions of Years

This is a magnified image of a fungus from the same genus as the one discussed in the article.
(Public domain image)

In 2008, plant pathologist Dr. Gary A. Strobel and his colleagues published a paper about an odd fungus (Gliocladium roseum) they found in a Patagonian rainforest. It is endophytic, which means it lives within a plant and takes nutrients from the plant, but it is not a parasite. Other endophytic fungi have been shown to produce all sorts of benefits to plants, including giving them much-needed chemicals and allowing them to communicate with one another, so this fungus probably gives some benefit to the plants in which it grows. However, that wasn’t the focus of Dr. Strobel’s paper. Instead, he and his colleagues noted that this fungus actually produced a wide variety of chemicals, including those found in diesel fuel! As the authors stated:1

The hydrocarbon profile of G. roseum contains a number of compounds normally associated with diesel fuel and so the volatiles of this fungus have been dubbed ‘myco-diesel’.

The prefix “myco” means “fungus,” so the authors basically were calling some of the chemicals that G. roseum produces “fungus diesel.”

Well, it seems that Dr. Strobel and his colleagues have been busy trying to coax G. roseum to make more “fungus diesel,” and they have produced some rather dramatic results. They built a tabletop device they call “The Paleobiosphere”2, which is supposed to mimic the conditions under which oil might form. It consists of two layers of shale, a type of rock that often contains oil. Sandwiched in between those two layers is a mixture of the fungus as well as leaves from maple, aspen, and sycamore trees. The container is flooded with water periodically, and in a mere three weeks, the shale layers contain a rich mixture of chemicals that is very similar to the oil found in the shales of Montana!

Continue reading ““Oil” in Weeks, Not Millions of Years”

The Box of Sin (A Short Drama)

The "Box of Sin" is a nice device to use in Christian drama.
I love studying and writing about science, especially as it relates to Christianity. However, I do have other writing interests. For example, every now and then, I write a “drama” for my church. Usually, these “dramas” are more like skits, and their purpose is to drive home a point in the pastor’s sermon. For yesterday’s service, the pastor wanted something that illustrates the fact that we are more likely to help lead people to Christ if we aren’t judgemental towards them. As I prayed and thought about what I would do, I decided to bring out the “Box of Sin.”

This is a device I use every now and again in my dramas. It is just a cardboard box that has the word “Sin” on it, but it is a great way to symbolize a person being lured into sin and becoming trapped as a result. You can use it for many different kinds of illustrations, such as the way I used it in the drama below. As with all of my dramas, feel free to use this one in any way you think will serve the body of Christ. I would appreciate a credit if you use the drama mostly as written. However, if you take the idea and make something relatively new, please don’t feel the need to credit me.

Continue reading “The Box of Sin (A Short Drama)”

The Great Debate, Take 2

The skulls of some primates. Based on genetics, most evolutionists believe the chimpanzee is our closest living relative, but physical characteristics indicate the orangutan is. (click for credit)

Last night I once again debated Dr. Robert A. Martin, a vertebrate paleontologist who is professor emeritus at Murray State University. The previous debate was on the broad subject of creation versus evolution. This time, the organizers of the event wanted us to narrow our discussion, so we chose to talk about dinosaurs and people. Before I discuss the debate, I want to thank Dr. Martin for participating in it. I personally think the best way to understand an issue is to hear from multiple sides, so I think debates can be extremely helpful to those interested in controversial topics. However, it is difficult to get evolutionists to participate in debates about the creation/evolution controversy. I thank Dr. Martin for being committed to education strongly enough to be an exception to that general rule!

Since Dr. Martin had the weaker position scientifically, I allowed him to choose whether to present his case first or second. He chose to go second, so I was up first. The initial activities (songs, introductions, and remarks from the organizers) made it clear that for some reason, the audience this year was overwhelmingly creationist. The previous year, creationists were in the majority, but there were many evolutionists present. That didn’t seem to be the case this year, so I started by thanking Dr. Martin for being willing to act as a lion in a den of Daniels.

In making my case, I concentrated on the evidence that indicates dinosaur fossils are not millions of years old. I stressed the soft tissue that is being found in fossils that are supposed to be millions of years old (see here, here, here, here, and here, for example). I also discussed the fact that several dinosaur bones from different locations around the world all have enough carbon-14 in them to indicate that their maximum age is less than 40,000 years old. I also discussed how living organisms like the coelacanth, Wollemi pine, and tuatara falsify the geological-column thinking that leads most scientists to conclude that humans and dinosaurs didn’t live at the same time.

Continue reading “The Great Debate, Take 2”

Yet Another Global Warming Prediction Falsified

The extent of sea ice in the Arctic. (Click for credit and larger image)

Those who believe that global warming is happening and is caused by people are constantly making predictions about what will happen in the future. Those predictions, however, generally turn out to be incorrect. Not long ago, for example, I showed how miserably the predictions of the United Nations’ Intergovernmental Panel on Climate Change compare to the data, even those that are most friendly to the global warming hypothesis. Well, now that the September equinox has passed, the Northern Hemisphere has officially moved out of summer and is experiencing Autumn. As a result, we can confidently declare that yet another prediction made by global warming advocates has failed.

I doubt that you’ll see this reported in many news outlets, but way back in 2007, Dr. Wieslaw Maslowski, a research professor in the Department of Oceanography at the Naval Postgraduate School, stated that based on his research, the Arctic would be ice-free by the summer of 2013. His prediction was based on a “high-resolution regional model for the Arctic Ocean and sea ice forced with realistic atmospheric data,” and he thought it might be a bit conservative. In fact, he said:

Our projection of 2013 for the removal of ice in summer is not accounting for the last two minima, in 2005 and 2007…So given that fact, you can argue that maybe our projection of 2013 is already too conservative.

Well, as you can see from the graph above, Dr. Maslowski’s “too conservative” prediction has failed miserably. Not only is there ice in the Arctic, there is significantly more ice than there was in 2012. Now, of course, the amount of ice is still way below the average, but it is also way above zero, the prediction that Dr. Maslowski thought might be “already too conservative.”

Continue reading “Yet Another Global Warming Prediction Falsified”

Accelerated Radioactive Decay

One mode of radioactive decay is alpha decay, where an unstable nucleus spits out two protons and two neutrons bound together as a helium nucleus, which is also called an alpha particle.
(public domain image)

When I first heard about the idea that radioactive decay might vary from the smooth, constant-half-life behavior that is typically observed, I was more than a little skeptical. As a nuclear chemist, I am well aware of how much energy it takes to affect nuclear processes. Since those energies are not generally attainable except with the use of a particle accelerator, a magnetic containment system, or some other high-powered device, it seemed absurd to think that variable radioactive decay was anything other than the mad wish of those who didn’t like the conclusions of radiometric dating. However, over the years, the data have convinced me otherwise. I written a couple of posts about variable radioactive decay (see here and here), and it seems clear to me that it does happen, at least under some circumstances.

Recently, I came across another study on variable radioactive decay. It is actually a follow-up to a previous study,1, and it explores the alpha decay of uranium-232. As shown in the drawing above, alpha decay is one specific type of radioactive decay in which an unstable nucleus attempts to reach stability by spitting out two protons and two neutrons. Those four particles are bound together to form the nucleus of a helium atom, which for historical reasons is also called an alpha particle. It turns out that when uranium-232 does this, the resulting nucleus still isn’t stable, so a long series of further alpha decays occur, eventually producing lead-208, which is stable.

The authors of the study I am writing about weren’t interested in the subsequent decays. They looked specifically at the alpha decay of uranium-232. Under normal circumstances, this decay has a half-life of 69 years.* This means if I start with 200 uranium-232 atoms, after 69 years, only half of them (100) will remain. The other half will have decayed away. If I wait another 69 years, only half of those (50) will remain. In another 69 years, half of those (25) will remain. In the end, this is typically how radioactive decay works: the number of radioactive atoms ends up decreasing by half over every half-life.

The results of the study seem to indicate that a tabletop device involving a laser and gold can end up decreasing the half-life of uranium-232 by as much as a factor of 435,494,880,000,000!2

Continue reading “Accelerated Radioactive Decay”

An Insect with Gears

The video above shows you the jumping prowess of a juvenile Issus coleoptratus, a species of plant hopper. As its name implies, this insect hops from plant to plant, eating sugar directly from the veins of the plant’s leaves. Believe it or not, jumping is a rather difficult way to travel, because once you are in the air, you don’t have a lot of control over your body’s movement. As a result, the jump itself is very important. Not only must it be aimed correctly, it must happen so that the body stays upright throughout the time it is in the air.

That latter task can be a bit difficult. Imagine, for example, if an insect pushes off really hard with one leg, but not very hard with the other leg. This imbalance would cause the body to start spinning in the air, which would make for horrible aerodynamics and a very difficult landing! The same thing would happen if the pushes were not timed very well between the legs. If one leg started pushing sooner than the other, the insect would once again go spinning out of control. Most jumping insects are designed to deal with this by having their jumping legs arranged on either side of the body. This gives them a larger margin of error when it comes to both the timing and the force of each leg. This is convenient, but it also inherently limits how high and far the insects can jump.

For species of insects that must jump really high and far, the legs must be right under the body. This maximizes the amount of force that goes into the jumping motion, but it also allows for only a tiny margin of error in terms of the timing and relative force of each leg. As a result, these species must coordinate their jumping legs very, very precisely.

Continue reading “An Insect with Gears”

Relationships in Nature Go Deep – Really Deep!

This species of jewel wasp cannot produce living male offspring with another species because of its bacteria (Click for credit)

It has long been known that the species of jewel wasp pictured above (Nasonia vitripennis) can mate with another species of jewel wasp (N. giraulti), but the male offspring die in their larval stage. This, of course, keeps the species separate. Scientists have always assumed that the death of the male larvae must have something to do with an incompatibility between the two species at the genetic level. However, a recent study indicates that’s not true. The real reason the males die off is because their bacteria are incompatible with them.

Each species has bacteria living in its gut, helping it digest food, fight off infection, etc. However, the actual mix of bacterial species is different in each wasp species. When male larvae that came from the interbreeding of the two species were given antibiotics to kill off those bacteria, the larvae were able to survive. They weren’t incredibly healthy, but they were as healthy as purebred wasps that also had no bacteria living inside them. However, when bacteria from either species were introduced back into the larvae that came from interbreeding, they died! In the end, then, the males don’t die because of genetic incompatibilities. They die because of bacterial incompatibilities. As ant taxonomist Dr. Corrie Moreau commented:1

I would never have predicted that…We were blown away.

So in some way that we don’t currently understand, the bacteria that live in the gut of these two species of jewel wasps so fundamentally affect their development that the wasps cannot survive unless they are compatible with a specific mix of bacteria. Interestingly enough, this isn’t the only case of bacteria affecting the development of an animal.

Continue reading “Relationships in Nature Go Deep – Really Deep!”