Another excerpt from Science in the Atomic Age

God designed creation so that almost everything it needs is recycled. Only sunlight must be continually added to satisfy the needs of both producers and consumers. (Image copyright Shutterstock.com/Sakurra)

I am putting the finishing touches on my 7th/8th grade book Science in the Atomic Age (which should be available for purchase in June), and I wanted to post another excerpt from the book. The excerpt I posted previously comes from a section about the brain. This one comes from an earlier chapter, where I discuss plants.

By the time the students reach this point in the course, they know that producers are organisms which make their own food (usually through photosynthesis), and consumers must eat other organisms for food. They also know how to interpret chemical equations and the specific chemical equation for photosynthesis. In addition, I have just shown them the chemical equation for the process by which consumers burn their food for energy and have pointed out that it is the opposite of the chemical equation for photosynthesis. Here is the discussion that follows:

In other words, producers like plants use water and carbon dioxide to make glucose and oxygen, and consumers then use that glucose and oxygen to make carbon dioxide and water. So producers are feeding us, and we take what the producers make and then produce the chemicals they need to make what we need! In this sense, at least, consumers are the opposites of producers.

This is a real testimony to God’s power and ingenuity. He not only created the producers to feed the consumers, He also designed the consumers so that when they use what the producers made, they give the producers what is needed so that the producers can make more food. Now, of course, the sun plays its role, too. It provides the energy the producers need in order to do photosynthesis in the first place.

This is all summed up in the illustration above. The sun shines light on the earth. Producers absorb that light in the chloroplasts of their cells and use it, along with carbon dioxide and water, to make glucose and oxygen. Consumers then take that glucose and oxygen and use them to make energy for themselves. This ends up making carbon dioxide and water, which can be used by the chloroplasts in the producers (along with more energy from the sun) to make more glucose and oxygen. As a result, the only constant input needed is energy from the sun. Everything else just keeps getting recycled between producers and consumers!

This Balance Is Even More Amazing

The balance between producers and consumers, as illustrated in the drawing above, is amazing. However, we need to be aware that it is often oversimplified. I have heard many educators say, “Plants make food and oxygen, while animals use food and oxygen.” That is true, but it is oversimplified. Plants do make food and oxygen. It happens when they are doing photosynthesis. However, they also use food and oxygen.

Does that statement surprise you? It might, but if you think about it, the statement makes a lot of sense. After all, why are plants doing photosynthesis? Because they need to make food for themselves, right? Well, what does the plant do with that food? It burns that food for energy, according to the equation I showed you earlier. What does that equation say? It says oxygen and C6H12O6 are reactants. That means they are used up. So plants not only use carbon dioxide and water to make glucose and oxygen, but when it is time for them to burn their food, they must use glucose and oxygen to make carbon dioxide and water.

Now wait a minute. If plants end up using the glucose and oxygen they make through photosynthesis, how are we able to use it? Because of this important fact: Plants make a lot more food and oxygen than they ever need. If plants only made the food that they need, they would end up using it and all the oxygen they made, and there would be nothing for consumers to eat or breathe. However, plants have been designed to make much more food than they will ever need. That means they also make more oxygen than they will ever use. That way, there is food and oxygen for consumers.

This is a very, very important design feature that many people don’t appreciate. In order for us (and most consumers) to survive, it’s not enough that producers like plants exist. They must not only exist, but they must do a lot more work than just keeping themselves alive. They must overproduce food and oxygen so that there is plenty for the consumers. Thus, the proper way to describe the balance between plants and animals is, “Plants make food and oxygen, but they also use it. However, they make more food and oxygen than they need, so that animals can use the rest.”

Harvard Graduate Responds to Proposed Ban on Homeschooling

Harvard Square as seen from a nearby building (click for credit)

A few weeks ago, I wrote about an anti-homeschooling summit that was being held at Harvard Law School. Well, over the weekend, I got several emails and Facebook contacts that contained an article written about one of the summit’s organizers, Professor Elizabeth Bartholet. The article discusses a paper she recently wrote in the Arizona Law Review. That paper

…calls for a radical transformation in the homeschooling regime and a related rethinking of child rights. It recommends a presumptive ban on homeschooling, with the burden on parents to demonstrate justification for permission to homeschool.

Once I read the article and the abstract from Dr. Bartholet’s paper, I started planning the rebuttal piece that I was going to write. After all, my first exposure to homeschooling was having homeschool graduates in my Ball State University chemistry and physics courses. They impressed me so much that I started researching home education and eventually started working with homeschoolers. Today, I am a strong advocate of homeschooling specifically because I have come to the conclusion that it is the best model of education available to parents in the United States.

Fortunately, there is no need for me to write that rebuttal article, because an excellent one has already been written by Melba Pearson,
a homeschool graduate who also graduated from Harvard. I encourage you to read the article in its entirety, as well as one of the articles (published in The Harvard Crimson) that she links to. However, I must leave you with the closing paragraph of her article, which succinctly explains why Dr. Bartholet’s idea is not only absurd, but profoundly anti-education:

I excelled at Harvard because I was homeschooled, and of that I am proud. It is deeply disappointing that Harvard is choosing and promoting an intellectual totalitarian path that calls for a ban of the liberties that helped me and countless others succeed, for it is those liberties and ideals that have made America the great nation it is today.

What Does Social Distancing Accomplish?

Cumulative COVID-19 cases (left) and deaths (right) per million in Sweden and Denmark

In a comment on a previous post about COVID-19, John D. said that he was watching Sweden and Denmark to evaluate whether or not shutting down most of society is an effective strategy against the disease. Why? Because they are very similar countries in the same basic region of the world, but they have remarkably different responses to the disease. Denmark has instituted many social-distancing strategies against the disease, while Sweden has not. Comparing how the disease is affecting those two countries might tell us something about how effective these strategies really are.

Well, I had a chance to look into this a bit, and the results of my analysis are shown in the graphs above. I got my data from the European Centre for Disease Prevention and Control. Of course, you could question the reliability of the source. However, I think that if it is not reliable, it is probably equally unreliable for both countries, so most likely, the comparison is justified. The data are compiled as a list of cases and deaths each day. I made a running day-by-day total of each and then divided by the population of each country in millions. So what you see in the graphs above are the cumulative number of cases (left) and deaths (right) each day, per million people in the country.

Looking at the graph on the left, we see that the rate of growth of cases is similar for both countries, but Sweden actually has a lower number of cases per million! So despite its social distancing guidelines, Denmark has more cases per million people than Sweden. However, look at the deaths per million, shown in the graph on the right. Not only does Sweden have significantly more deaths per million, they are increasing a lot faster than those in Denmark!

How can we understand the fact that Denmark has more cases but fewer deaths per million people? I personally think it’s because Denmark is probably testing more. Because of social distancing, doctors and hospitals are not doing a lot of the routine care they normally do. As a result, they are probably more focused on COVID-19, which probably results in more testing. It’s very possible that Sweden has a lot more cases, but since they aren’t testing as much as Denmark, that doesn’t show up. This is all just spectulation, of course. I don’t have the data to confirm whether or not Denmark is doing more testing than Sweden.

It’s also possible that less routine medical care in Denmark simply means that the people with COVID-19 are getting more medical attention, which leads to a higher rate of survival. So perhaps Sweden does have fewer cases, but since each case doesn’t get as much attention, the death rate is higher. Finally, it’s possible that because of social distancing, the sheer number of viruses to which each person is exposed is lower in Denmark. If that’s the case, the initial viral load on a patient is lower, which makes the disease more survivable.

Whatever the explanation for the fact that Denmark has more confirmed cases but fewer deaths per million, it appears that social distancing significantly reduces the number of deaths per million people in the population. Of course, I don’t think you can say that definitively based on this analysis alone, but the data do support that conclusion.

ADDED NOTE: If you look at the links in Dawn’s comment and Laree’s comment, you will see that Denmark is, indeed, doing more testing, which explains why they have more cases.

Please…Discard the Dogma!

Evolutionists have dogmatically insisted that pseudogenes are genes that were broken by mutation and are now useless. Some are now pleading with their colleagues to actually look at the data.

It always troubles me when I read other scientists who ignore the data in order to cling to their cherished dogmas. As a scientist, I know that this holds back the progress of science. As a result, I was heartened to read three scientist calling on their colleagues to abandon evolutionary dogma when it comes to pseudogenes. If others heed their call, we will most certainly learn more about DNA.

What am I talking about? Let’s start with what a pseudogene is. It is a region of DNA that looks like a known gene, but is different enough that it can’t do what the known gene does. As a result, it has become evolutionary dogma that pseudogenes are “broken” genes – genes that became non-functional due to duplication and mutation. Here, for example, is how the Encyclopedia of Genetics definitively describes a pseudogene:

A pseudogene is a nonfunctional genomic region that originated by duplication of, and is still homologous to, an ancestral gene.

In other words, a pseudogene is the result of a gene being copied and then broken. Creationists have long argued that pseudogenes are functional; they just don’t function the way evolutionists expect them to. The three authors of the paper I mentioned above have arrived at that same conclusion (at least for many pseudogenes), and they are asking their colleagues to pay attention to the data and do the same.

To emphasize the point that this evolution-inspired dogma is wrong, they list many pseudogenes that have been demonstrated to have an important function. They then make this important statement:

The examples of pseudogene function elaborated on here should not imply that pseudogene functionality is likely to be confined to isolated instances.

In other words, you can’t say that the known functional pseudogenes are exceptions to the rule. There are enough functional pseudogenes to call into question the assumption that they are mostly non-functional.

At the same time, however, these authors are cautious:

The purpose of this article is not to discard the pseudogene concept or to suggest that all pseudogenes are functional. The majority of currently annotated pseudogenes are neither robustly transcribed nor translated. Such regions fit well the original descriptions of pseudogenes as ‘similar, but defective’. Rather, we argue that their labelling as pseudogenes is not constructive for advancement of understanding of genome function and misdirects experimental design.

In other words, the authors are simply telling their colleagues to follow the data. Do not assume that a pseudogene is non-functional just because it has been identified as a pseudogene. Instead, investigate it to find out whether or not it actually is. The progress of science is hindered when you assume non-functionality because of the way the sequence has been identified.

I not only completely agree with that sentiment, I would also add this: following any dogma (evolutionist, creationist, or other) hinders the progress of science. Scientists should be willing to follow the data wherever they lead. Unfortunately, such scientists tend to be the exception, not the rule.

Are Hydroxychloroquine and Azithromycin Effective Against COVID-19?

Dr. Didier Raoult, French physician and microbiologist who thinks he has an effective treatment for COVID-19 (click for image source)
Two weeks ago I wrote about a possible treatment for COVID-19, the pandemic disease that is affecting most of our lives. It has been championed by French physician and microbiologist Dr. Didier Raoult. So far, he has written two papers about it (here and here). I was excited about his initial report, and I was hoping for a serious follow-up study. When I saw that he had written a second paper, I eagerly read it. Unfortunately, it wasn’t the serious study that I had hoped for. Nevertheless, it has gotten some media attention and seems to have influenced the FDA, so I decided to share my thoughts on it.

The results seem very exciting. He and his colleagues treated 80 patients with the malaria-fighting drug hydroxychloroquine and the antibiotic azithromycin. They note that they saw “clinical improvement” in 78 of them. One of the other two (an 86 year-old patient) died, and the other (a 74 year-old patient) was still in intensive care when the paper was written. While that sounds really good, there are a couple of “red flags” that make me hesitant to think that the treatment is as effective as it seems.

The first problem is that there is no control group. In a serious medical study, there needs to be a similar group of patents who do not receive the treatment. The treated group can be then measured against the untreated (control) group. Without that, it is very difficult to determine what the actual effect of the treatment is. Of course, I understand why there is no control group. Dr. Raoult wants to save lives. He thinks his treatment is effective, so he wants to give it to as many people as he can. He would have to “withhold” his life-saving treatment from some people so that he could have a control group, and that could lead to more deaths. I can understand why a physician would shudder at that idea.

However, the control group is important, because we really have no idea what would have happened to the 78 people who recovered had they not been given the treatment. While we still don’t know, the fatality rate of this disease is thought to be 1-2%. In 80 people, then, you would expect only one or two (0.8-1.6 to be precise) deaths, so this group of patients has the fatality outcome we expect had there been no treatment at all.

Now, of course, Dr. Raoult and his colleagues did more than just track whether or not the patients died. They tracked the amount of virus in each patient’s nasal cavity and found that the amount of virus dropped significantly for most of them. Once again, that sounds nice, but without a control group, we simply don’t know whether or not that was because of the treatment.

The second problem is the profile of patients who got the treatment. They mostly seemed to have a mild case of the disease. Only 15% had fever. Only 53% showed signs of lower respiratory tract infection. Worse, 5% showed no symptoms at all. Once again, it isn’t surprising that most of these patients recovered – most of them fit the profile of people who are expected to recover.

There is a third problem. A scientific study has been done in China with a control group. It is very small, and I can’t read it, since it is in Chinese. However, based on a Forbes article, the study had 30 patients. Half were given hydroxychloroquine, and half were not. That study showed no significant difference between the control group and the treatment group. Thus, if that study is correct, hydroxychloroquine is not an effective treatment for COVID-19.

Now, of course, that study didn’t include the antibiotic, so it’s possible that Dr. Raoult’s treatment is better than the treatment assessed by the study. It’s also possible that because of problems with the Chinese study’s design (small number of patients and no placebo, for example), the Chinese study is wrong. From a scientific point of view, then, we simply do not know whether or not Dr. Raoult’s treatment (or hydroxychloroquine by itself) is effective against COVID-19.

Nevertheless, the FDA has approved using hydroxychloroquine and other, similar drugs to treat COVID-19. This is probably a good plan, since the risks of using the drugs are low. However, until serious, controlled studies are done, we have no idea whether or not they are doing any good.