I have been doing an “interstate book club” with one of the most brilliant people I know. She and I read the same book and call each other on a regular basis to discuss it. We are currently covering Jerry Fodor and Massimo Piatelli-Palmarini’s book, What Darwin Got Wrong. I suspect that I will do a complete review of the book at some point, but I ran across something that I found so amazing, I had to write about it today. It has to do with the roundworm known as Caenorhabditis elegans, which is pictured above. This tiny (about 1 millimeter long), transparent worm has been studied extensively. In fact, it was the first multicellular organism to have its genome fully sequenced.1
Before that happened, however, Christopher Cherniak did a detailed analysis of the creature’s nervous system. Approximately one-third of the cells in the roundworm’s body are nerve cells, so the nervous system is obviously important to this tiny animal. The system is made of clumps of nerve cells (called ganglia) in the head, tail, and scattered throughout the main nerve cord, which runs along the bottom of the worm’s body. While this system is “simple” compared to the kind of nervous systems you find in many other animals, it has served as a model for helping scientists understand how nervous systems develop and function in general.
Of course, since the nervous system has to process sensory information and control various muscle movements, the ganglia must be connected to one another, to the receptors that sense the outside world, and to the muscles that the nervous system controls. Obviously, then, there is a lot of “wiring” involved. Cherniak wanted to know what determined how this wiring was done in the animal, so he computed all the possible ways that the worm’s nervous system could be wired, given its structure and the number of components it had. His computation indicated that there were 39,916,800 ways the wiring could have been done.
Now that’s a lot of possibilities, but even back in 1994, computers could easily analyze all of them, so he used 11 microcomputers to analyze all 39,916,800 ways the nervous system could be wired. It took them a total of 50 hours to churn through the analysis, but what they found was incredible!
Continue reading “Nematode Nervous System: A 1-in-40-Million Design”