It is generally assumed by evolutionists that natural selection tends to “weed out” harmful mutations. After all, if a mutation is harmful to an organism, that organism will be less fit to survive and less likely to pass on that mutation to its progeny. While this idea makes perfect sense, it is not clear how effective natural selection can be at its job.
In his book Genetic Entropy and the Mystery of the Genome, award-wining geneticist and young-earth creationist Dr. John C. Sanford argues that most mutations simply don’t produce a strong enough effect to influence natural selection. As a result, organisms continue to build up deleterious mutations as time goes on. This leads to an erosion of the genome. As he puts it:1
While selection is essential for slowing down degeneration, no form of selection can actually halt it. I do not relish the thought, any more than I relish the thought that all people must die. The extinction of the human genome appears to be just as certain and deterministic as the extinction of stars, the death of organisms, and the heat death of the universe. (emphasis his)
While he quotes a lot of experimental research to support his findings, he has never been able to demonstrate this effect directly…until now. He obviously hasn’t shown that the human genome is deteriorating, but last year he and young-earth creationist Dr. Robert W. Carter published (in a standard, peer-reviewed journal) the results of some of their research, which directly demonstrate that even when natural selection is working hard, it doesn’t seem to do a good job of getting rid of harmful mutations.
Continue reading “Does Natural Selection Weed Out Harmful Mutations?”