Scientists Have Witnessed a Single-Celled Algae Evolve Into a Multicellular Organism…Most of us know that at some point in our evolutionary history around 600 million years ago, single-celled organisms evolved into more complex multicellular life. But knowing that happened and actually seeing it happen in real-time in front of you is an entirely different matter altogether. And that’s exactly what researchers from the George Institute of Technology and University of Montana have witnessed – and captured in the breathtaking, time-lapse footage below.
Over the course of my scientific career, I have learned that many science journalists are terrible at science and not much better at journalism, so I did what I always do when I read about science in the popular press: I found the scientific article upon which it was based. Not surprisingly, the study didn’t do what the article claims. It did find one interesting result, however.
When I was on the faculty at Ball State University (in the early 1990s), I started encountering a unique group of students: homeschool graduates. I knew nothing about homeschooling, but I was impressed by what I saw. Not only were homeschool graduates excellent university students, but they were also at university for more than just the chance to get a degree and get a good job. They were there because they recognized that God had given them specific gifts, and to honor Him, they needed to develop those gifts and use them to make the world better for other people. My experience with them inspired me to start working with homeschooling parents, and eventually, I began writing homeschooling curriculum.
Since that time, I have been constantly impressed with the homeschooled students and homeschool graduates I have encountered. They are still my best university students, and I expect that they will do great things. Yesterday, I had a chance to chat with one who is, indeed, doing great things: Dr. Nathan T. Brewer. He is currently doing postdoctoral research for the University of Tennessee and is employed by Oak Ridge National Laboratory. He is part of a team that is trying to understand the structure of the atomic nucleus by synthesizing new elements.
His proud mother informed me about his work via Facebook, so I contacted him, and he sent me a copy of the paper that he thinks contains his most important scientific work so far. In that paper, he describes experiments that he and an international team of scientists performed to show an alternate method of producing the heaviest-known element, which is named Oganesson in honor of Russian nuclear physicist Yuri Tsolakovich Oganessian. He thinks that this method shows the most promise for synthesizing even heavier elements, and it also helps us further understand how these exotic nuclear reactions happen. While all of this might sound unfamiliar to you, it is very important work in the field of nuclear physics, and I am impressed that someone so young has been a successful part of it.
While I am fascinated by the science he is doing, I thought my readers would be interested in the fact that he was homeschooled from grades 6 through grades 12, so he graciously agreed to take time out of his busy day to speak with me about topics that are of interest to homeschooling parents.
I started seeing it on my Facebook feed Tuesday. I started getting messages about it on Wednesday. It’s a news story of great interest to many people, and the headline says it all:
A CURE FOR CANCER? ISRAELI SCIENTISTS SAY THEY THINK THEY FOUND ONE
The news outlet that published the story is the Jerusalem Post. After it was published there on Monday, U.S. news outlets picked up the story. I suspect that nearly everyone in the U.S. knows someone who has been afflicted with some form of cancer, so the interest is understandable. The problem is that the story is almost certainly not true.
As far as I know, the Jerusalem Post is a credible news organization. Also, the people who have made the claim (Dan D. Aridor and Dr. Ilan Morad ) are credible people. Nevertheless, the claims are not credible, especially when you investigate them.
Aridor and Morad say that they are using “phage display” technologies to target proteins that are typically produced by cancer cells. This allows them to eliminate cancer cells without affecting healthy ones. This is already an active area of cancer treatment research, so the technique is a valid one. They claim that they have a special variation on the technique that will allow them to offer “a complete cure for cancer” within a year or so. If that sounds too good to be true, it probably is – especially when you see what the claim is based on.
Essentially, they say they have tested their technique on mice, and it works very well. Unfortunately, they have not published their results, so it is hard to know what that really means. They claim they don’t want to spend their time and money on writing up a publication. Instead, they want to concentrate on the research necessary to perfect the technique. That is understandable, and they might also be afraid that others could use their publication to “copy” their technique and beat them to the punch.
So let’s give them the benefit of the doubt. Let’s assume that they tested their technique on mice, and it was found to completely eliminate specific types of cancer in mice with no discernible side effects. That still doesn’t mean it will work in people! The gap between animal studies and human studies is huge, which is why many treatments that worked incredibly well in animals do very poorly when used to treat people. Now, of course, it makes sense to test a treatment on animals first, but to claim that a technique can go from early animal trials to human treatment in a year is naive, at best.
Also, to make a blanket statement that it will be “a complete cure for cancer” is silly, since there are so many different forms of cancer. It’s possible that their technique might be a great cure for some forms of cancer, but the idea that it will treat all (or even most) forms of cancer seems shockingly inconsistent with what we know about the nature of cancer itself.
Of course, no one will be happier than me if I am wrong. I have had skin cancer removed, and my wife recently had a cancerous breast tumor removed. Thus, a cure for cancer would clearly make me very happy. Nevertheless, I don’t think there will be one within a year, and even if there is one, I suspect that it will only be able to treat specific types of cancer.
The majority of climate scientists think that global temperatures have risen over the past century mostly because of human activity. However, there are some climate scientists who think that the small changes we have seen in global temperature are mostly the result of natural variations that exist independently of people. Others simply say we don’t have enough information to know how much human activity has played a role in the process. Add to that the unreliability of much of the early data regarding global temperatures, and you end up with a picture that is far more murky than what most media outlets and politicians want you to see.
A recently-published study might help to eventually shed some light on how much human activity affects global temperatures. It comes from four climate scientists in China who are affiliated with The Climate Center of the Zhejiang Meteorologic Bureau, the Earth Science School of Zhejiang University, and the Shanghai Climate Center. They are convinced that the vast majority of the changes we have seen in global temperatures are due to natural variations, and those variations are buffered by the oceans. As a result, they have tried to analyze global temperatures from that perspective.
Since global temperature data sets don’t really agree with one another, they first had to choose which global temperatures they would actually use. They chose the Global Land Surface Temperature Anomaly Index (GLST) as compiled by the NOAA. They then tried to find correlations between those data and the Sea Surface Temperatures (SST) as compiled by the Hadley Climate Center. The correlations they found led them to develop a mathematical equation that would reproduce the GLST data. While the idea of finding a single equation that would fit all the GLST data might seem like an impossible task, it is not. One phrase I often hear from my nuclear chemistry colleagues is, “It only takes four parameters to fit an elephant.” In other words, if you have enough parameters in your equation, you can fit just about anything.
Of course, for something as complex as global temperatures, it takes more than four parameters. In fact, their paper indicates that it took 20. However, with their 20-parameter equation, they were able to reasonably reproduce the global temperature data that they were analyzing. The results can be seen in the image at the top of the post. The jagged, grey line indicates the data, and the smoother, black line indicates the results of their equation. As you can see, it does a pretty good job of fitting the known data.
Does that mean their equation is a good explanation of global temperatures? Not at all. It is simply an equation that has been forced to fit the data. What I find interesting, however, are the temperatures it predicts for the future. According to the equation, the earth has hit its maximum temperature for a while, and over the next 100+ years, the average temperature of the planet will cool. Do I think that prediction is correct? There is no way I can adequately judge that. There are simply too many unknowns in climate science for anyone to make a reliable prediction about what is going to happen in the future. Perhaps we will eventually learn enough about climate science to change that, but right now, the uncertainties simply preclude reasonable predictions.
However, here’s what I will say about this very interesting study: The authors assume that that the vast majority of the temperature variations we have seen are the result of natural processes. If, over the next 30 years, the data continue to fall in line with the predictions of their equation, that will lend more credence to their assumption. If not, that will indicate that either their assumption is wrong, or that some of the natural variations which cause global temperature changes are too long-term to show up in a century’s worth of unreliable temperature data.
Regardless of the outcome, I do think that this paper, while simple in its approach, is a valuable addition to climate science.
The more we learn about creation, the more it surprises us. While it is true in all areas of science, it seems particularly true in genetics. When I was at university, I was taught as definitive fact that each gene in my DNA determined the makeup of one protein in my body. We now know that is false. I was also taught as definitive fact that the only way a parent can transmit a trait to its offspring is through the sequence of nucleotide bases in DNA. As a result, if a new trait appears in a population, it must be due to a change in the species’ DNA sequence. We now know that is false. For example, I was taught as definitive fact in university that cave fish are blind because of mutations to their DNA. We now know that is false, at least for one species of blind cave fish.
So we now know that there are ways to inherit traits that go beyond the DNA sequence that you inherit from both parents. For example, we know that if you train mice to fear a certain smell, the next generation can inherit that fear. It’s not that the parents train the fear into their offspring (the offspring were raised separate from their trained parent). They actually inherited the fear. How in the world can a parent pass on a fear of something to its offspring? That’s what the field of epigenetics (which literally means “on top of genetics”) wants to find out.
We know that it has something to do with how an organism regulates the activity of its genes. An organism can alter chemical aspects of the DNA that are not related to its actual sequence, and that alteration can decrease the use of a gene, increase the use of a gene, turn a gene off so that it is not used at all, or turn a gene on so that it will start being used. For example, most people are not born lactose intolerant. After all, they drink their mother’s milk or a milk-based formula. Milk digestion requires the enzyme called “lactase,” which is coded for by a gene. While everyone has that gene turned on at birth, in some people, it gets turned off later on, causing lactose intolerance. Nothing has changed in the person’s DNA sequence – the gene is still there and has not been broken. However, that gene has been turned off by epigenetic mechanisms. It is thought that this process is responsible for epigenetic inheritance. To some extent, we must be able to inherit the “off” and “on” status of our parents’ genes.
One of the things I continually stress with my students is that science doesn’t have to make sense. In fact, most of the theories in my scientific field make no sense at all. Why do I believe them? Because they make predictions which are later verified by the data. That’s the acid test of a scientific theory. If it can make predictions about something that is not known and those predictions can then be tested by experiment or observation, the theory is scientific. If observations or experiments actually confirm the predictions, then it is a reliable scientific theory. For example, young-earth creationism is a reliable scientific theory, because it makes predictions which are later confirmed by the data.
The same can be said of Einstein’s theory of general relativity. Make no mistake: It’s a very strange theory. It says that what we see as the force of gravity is not really a force at all. It is a consequence of how mass warps space and time. Now that’s just crazy. We know that we stay on the surface of the earth because the force of gravity continues to pull us to the center of the earth. An apple falls from a tree because the force of gravity pulls it to the earth. The earth stays in orbit around the sun because the force of gravity keeps it there. Sir Isaac Newton himself gave us an equation for gravity, and that equation has been tested over and over again and found to be reliable. It begins “F =”. The “F,” of course, stands for force. Why,then, would you believe something as silly as what Einstein said? Because his theory made several testable predictions, and when those predictions were tested, they were confirmed.
One of the stranger predictions of general relativity is that mass warps space and time enough that it actually affects the passage of time. When you are near a large mass, time passes more slowly than when you are far from that same mass. According to Einstein, then, time is not constant in the universe. It ticks at different rates, depending on the mass in the area. Once again, to you and me, that’s just crazy. However, it has been confirmed in many different experiments. Indeed, the Global Positioning System would not work if we didn’t take into account that time is ticking differently on the GPS satellites than it is on the surface of the earth. Of course, one hallmark of good science is to continually test your theories, even when they have been confirmed. My publisher told me about a recent example of this being done, and it is worth discussing.
Back in 2014, the European Space Agency launched several satellites into orbit around the earth. Satellites are generally put in a circular orbit, so their distance from the earth never changes. However, a malfunction in the rocket used to place two of the satellites caused them to be put into an elliptical orbit. As a result, their distance from the earth regularly varied. The ESA corrected the orbits as much as they could, but they remain elliptical to this day. The difference between their closest and farthest distances from the earth is about 8,500 kilometers.
While this was a disappointing mistake, two physics research teams realized that they could use it to further test Einstein’s prediction of time being affected by how close you are to a massive object. After all, at regular intervals, these satellites moved closer to and farther from earth. Their position could be accurately measured in real time, using the International Laser Ranging Service, which shoots lasers at the satellites and measures the time it takes for the light to reflect off them and return.
The teams independently examined the time measured by the clocks aboard the satellites, and they each produced a graph similar to the one at the top of this post. Both of them showed that the time measured by the clocks aboard the satellites varied just as Einstein had predicted: As the satellites drifted away from the earth, time started passing more quickly for them. As the satellites drifted towards the earth, time passed more slowly for them. What makes their results noteworthy is that this test is more precise than any other that has ever been done. Their results tell us that the maximum error in Einstein’s prediction is about 0.003%.
Like it or not, the general theory of relativity is the best description scientists have for gravity, as these misplaced satellites have further confirmed.
If that’s true, it is the first object from interstellar space that has ever been seen by human researchers. Its technical name hasn’t been quite decided, since it is apparently the first of its kind. However, its name will start with “I1” – “I” for interstellar and “1” for the first one seen. However, it has been “nicknamed” ʻOumuamua, which is derived from the Hawaiian word for “scout.”
Once again, it is too small and far away to be seen as anything but a white dot in our most powerful telescopes. Indeed, there are many telescopes that cannot even see it, because it doesn’t produce enough light. However, based on the wavelengths of light that it reflects from the sun, it is thought to be red in color, highly elongated, and probably flat. That leads to the artist’s impression shown at the top of the post. Once again, these inferred characteristics are not the result of direct observation but, instead, are based on calculations that explain the wavelengths of light we receive from the object when it is viewed at different times.
Why am I blogging about this? Partly, because it may very well be the first interstellar object we have observed in our solar system. Any first discovery like that is important. The other reason is because of something suggested by Harvard astronomers Shmuel Bialy AND Abraham Loeb. They offer some scenarios that explain both the characteristics and the interstellar origin of the object. Among them:
Alternatively, a more exotic scenario is that ‘Oumuamua may be a fully operational probe sent intentionally to Earth vicinity by an alien civilization. (emphasis theirs)
Since I am on my way to speak at a science fiction convention (something I do almost every year), I thought it was only appropriate to write about it. Dr. Weryk (the object’s discoverer) disagrees, as do I. Nevertheless, I plan to work this in to at least one of the panel discussions on which I am participating this weekend!
While China and the U.S. lead the world in the amount of power generated by wind farms, India is not too far behind. As a result, a group of researchers from the Indian Institute of Science decided to study the ecological impacts of wind turbines. They analyzed turbines that have been installed in an Indian Mountain Range called the Western Ghats. Some of those wind turbines are pictured above. Specifically, they wanted to see if the predatory nature of wind turbines had other effects on the local ecosystem. Not surprisingly, it did.
First, they found that predator birds were four times less likely to be in the areas where wind turbines are installed compared to areas where they are not installed. That’s not surprising. Animals tend to avoid areas where they are preyed upon. Of course, the opposite is true as well. Animals tend to flock to places where they will not be preyed upon. As a result, the population of fan-throated lizards (a favorite meal of predator birds in the area) is significantly higher around wind turbines.
Interestingly enough, the effect of wind turbines was not limited to populations. The lizards’ behavior changed as well. Apparently, life is so carefree for the lizards living near the wind turbines that they have lost some of their fear of predators in general. The researchers tried to simulate predator attacks and found that they could get significantly closer to lizards that live near the wind turbines than they could get to lizards living where there are no wind turbines. Based on subsequent blood tests, the researchers concluded that lizards living near wind turbines have significantly less corticosterone (a stress hormone) in their blood.
So in the end, the ecological effect of wind farms goes beyond the slaughter of birds (and bats). It “trickles down” the food chain as well. The authors say:
By adding an effective trophic level to the top of food webs [by being an apex predator], we find that wind farms have emerging impacts that are greatly underestimated. There is thus a strong need for an ecosystem-wide view when aligning green-energy goals with environment protection. (bracketed statement mine)
I predict that as more research is done, we will see many more unexpected ecological effects from wind farms.
The acid test of a scientific theory is whether or not it can make testable predictions about things that are not known. If it can’t, it isn’t really a scientific theory. If it can, those predictions should be tested by observation or experiment. If the results of the test confirm the predictions, you can have more faith in the theory. If they do not, you must either alter your theory or abandon it. One of the main reasons I am a creationist is that creationism has made many testable predictions, and many of those predictions have been confirmed. In fact, creationism has a much better track record when it comes to confirmed predictions than does evolution (see here and here).
Recently, I ran across another study that demonstrates another failed prediction of evolutionary theory. It studied the alcohol dehydrogenase protein (ADH) as made by fruit flies. Fruit flies often consume alcohol because they feed on rotting materials, and the ADH they make allows them to do that. How do they make ADH? They have a gene that gives the necessary instructions to the cell. That gene is, in effect, a “recipe” for ADH.
Studies have already shown that the common fruit fly (Drosophila melanogaster) tends to feed on alcohol-rich things (like rotting fruit) more than a similar fruit fly, Drosophila simulans. The evolutionary explanation that has always been given for this fact is that these two fruit flies had a common ancestor, and that ancestor had a gene that made less efficient ADH. As a result, the common ancestor didn’t eat alcohol-rich things.
The evolutionary line that led to the common fruit fly experienced mutations in the ADH gene, and those mutations ended up making the ADH more efficient. Natural selection then caused those fruit flies to survive, because they could now survive by eating a lot of rotting fruit, while the other flies could eat only a little rotting fruit. That process continued over time, eventually leading to the common fruit fly we see today, which eats a lot of rotting fruit. In evolutionary biology lingo, we would say that the common fruit fly underwent “positive selection” in its ADH gene, while the other fruit fly did not.
A couple of days ago, I had a fun conversation with a student regarding astrophysics. He seemed very well-informed on the subject, so I begin using some physics “slang” to help move the conversation along. The student picked up on most of the references, but then we began discussing the cosmological principle, which is an assumption upon which the Big Bang model (and many other models of the universe) depends. It essentially states:
Viewed on a large enough scale, the properties of the universe are the same no matter where you are
The student was aware that most observations have never supported the cosmological principle, but he brought up the Cosmic Microwave Background (CMB), which he seemed to think supports it. I countered by mentioning the “Axis of Evil,” and he seemed to think I was joking. I was surprised that he didn’t get the reference, so I explained it to him. He was shocked that he hadn’t heard of it before, so he suggested that I write a blog post about it.
To understand the “Axis of Evil,” you first have to understand the CMB. When astrophysicists were working on the Big Bang model of the universe, which essentially says that the universe “exploded” into being from nothing, they realized that such an “explosion” would leave behind a signature: microwaves that appear from everywhere in the universe. The predicted details of these microwaves varied from paper to paper, but regardless of the details, everyone agreed that if the Big Bang happened, there should be a “background” of microwaves found everywhere in the universe. That’s what became known as the CMB.