Study Demonstrates that Most Animal Species Came Into Existence at the Same Time?

Most of an animal’s DNA is in the nucleus of the cell, but there is DNA in the powerhouse of the cell, which is called the mitochondrion.

In a comment on a previous article, a reader informed me of a study that I had not seen. It was published in the journal Human Evolution and its results are consistent with the idea that 90% of all animal species came into being at roughly the same time. This is certainly not what the hypothesis of evolution would predict, so some creationists as well as some intelligent design advocates have presented the study as evidence against evolution. In my reply to the comment, I expressed skepticism, even though I would love for the conclusions of the study to be correct. Now that I have read the study itself, I am even more skeptical.

The authors of the study analyzed the DNA of many different species of animals. However, they did not look at the DNA found in the nucleus of the cell. That DNA, called nuclear DNA, is responsible for most of an organism’s genetically-defined traits. They looked at mitochondrial DNA, which is the small amount of DNA that is found in the mitochondrion, the structure that produces most of the energy that the cell ends up using. To give you an idea of how different mitochondrial DNA is from nuclear DNA, the nuclear DNA of a human being is over 3 billion base pairs long, while human mitochondrial DNA is just over 16,000 base pairs long. You don’t need to know what “base pairs” are to see that there is only a tiny, tiny amount of mitochondrial DNA in a human cell compared to nuclear DNA.

Now even though there isn’t a lot of mitochondrial DNA, some sections of it seem to be very characteristic of the species of animal from which the cell comes. For example, a 2016 study analyzed a section of mitochondrial DNA (called the COX1 gene) among different species of birds. It showed that the COX1 gene alone was enough to separate 94% of the birds into species. Similar studies indicate that the COX1 gene can separate other species of animals, so the sequence of the COX1 gene is often referred to as the DNA barcode of the animal. This is what the authors of the study I am discussing focused on.

Continue reading

The Final Mother/Daughter Comparison Between My Chemistry and Apologia’s Chemistry

In case you missed out on the first installment of this review, a mother and daughter have been comparing my chemistry course, Discovering Design with Chemistry, to Apologia’s chemistry course, Exploring Creation with Chemistry, 3rd Edition. This review came about because they had originally started using Apologia’s course, and it just wasn’t working for them. They started using my course, and it worked much better, as you can see in the previous installment as well as what you can read below. The comparison starts with the daughter’s perspective and ends with the mother’s perspective:

From the daughter’s perspective:

Last January, I wrote a comparison review for 3 modules of Apologia’s Exploring Creation, 3rd Edition, to 4 chapters of Dr. Wile’s Discovering Design with Chemistry. My overall view was that Apologia was very thrown together and confusing, while Discovering Design was more organized and enjoyable. In May of this year, I completed studying Dr. Wile’s Discovering Design with Chemistry, as well as reading over Exploring Creation; my original opinions remain the same as before. Though, there are a few more things I’d like to add in.

As I went through both texts, I discovered that the order of information and tone of writing is very important to how the student copes with the material. For example, Discovering Design is in conversational tone as if Dr. Jay himself were the one talking. He will often add in quick, funny or humorous things throughout the text especially when the topic starts getting heavy, which I find helps to release “chemistry stress.” Exploring Creation is also in a conversational tone, but it gets to be a bit confusing when a paragraph is giving an example using the pronoun “I,” and the student in this case has no idea who ‘I’ is.

In Discovering Design, Dr. Jay explains things to the point, builds on top of the material as chapters go on, and balances the difficulties of that material so that it doesn’t seem like too much. I can’t say any of this for Exploring Creation. While a few explanations are easy to understand, too often the book contains wordy paragraphs and unnecessary rules, and it’s difficult to grasp how any of the chemistry concepts taught are connected. In Discovering Design, you can’t wait to read the next section. In Exploring Creation, you can’t wait until you’ve finished the module.

I did come across a few frustrating things while studying Discovering Design. One was not being able to successfully complete experiments, because I couldn’t get the materials in the country where I live, and sometimes getting generally confused because, well, chemistry can sometimes be confusing. However, having said that, the experiments I was able to complete were excellent and helpful (For example experiment 10.4), the extra helps website helped overcome some of the confusion, and overall the course was really what I was expecting when I wanted to learn about Chemistry. I didn’t study Exploring Creation all the way through (On Your Owns and tests), but after just reading it, I don’t imagine a student would have a very good idea of the beauty of what chemistry really is; as Discovering Design does so well.

The last thing I can say is that Exploring Creation is like learning a bunch of mixed up chemistry facts, while Discovering Design is taking a thorough chemistry course.

S. White, student

From the mother’s perspective:

As we worked through Discovering Design, I found my thoughts were about the same regarding the teacher’s material. The fact that concepts are well-explained in the Discovering Design teacher’s manual helped a lot, as it has been a very long time since I have studied chemistry. Comparing the tests of the two texts, I especially noticed a difference in the weighting of the points for the test questions. In the Discovering Design tests, I felt there was a healthy balance between grading the math and grading the understanding of concepts, whereas Exploring Creation seemed to put too much weight on the math questions so that even if a student got everything right but two of the math questions, he could fail the test, which doesn’t seem to be right when a student has clearly mastered the concepts.

I would like to note here that Dr. Wile’s text is designed to take a normal school year, and as you can see, my daughter completed the entire text in 5 months. This was not because the text was too easy, but rather that my daughter dedicated 5 or 6 hours a day (and in some cases more) to chemistry in order to finish it before her graduation. I would not recommend this schedule to the average student.

L. White, teacher

Do “Climate Change” Skeptics Behave in a More “Sustainable” Way?

A few days ago, I ran across an interesting study that I think is worth discussing. Like most studies that try to understand human behavior, its results are incredibly tentative. Nevertheless, they are interesting, and they also are consistent with a trend that I have noticed among my colleagues and friends.

The researchers wanted to probe how a person’s belief in human-induced “climate change” affects his or her personal behaviors. They recruited 600 people from Amazon Mechanical Turk (I had never heard of it until reading the study), and assessed both their beliefs about human-induced climate change as well as their behavior when it came to four types of “pro-environmental” activities: recycling, using public transportation, purchasing environmentally-friendly consumer products, and utilizing reusable shopping bags.

One very important aspect of this study is that the researchers didn’t just do this once. They did it seven times throughout one year. That way, they could track beliefs and behaviors as they ebbed and flowed. Unfortunately, it is hard to keep people interested in a study like this, so while they started with 600 participants, only 291 actually completed all seven evaluations. However, some participants missed just a few evaluations, so an average of 413 participants were evaluated in each of the second through seventh analyses.

Continue reading

Why You Must Read Multiple Opinions When it Comes to Evolution

I ran across an old article by Dr. David Berlinski. He is one of the more interesting proponents of intelligent design, since he does not believe in God but nevertheless thinks the natural world is obviously the result of design. In addition, he is an entertaining writer whose keen wit and disciplined thought help him cut to the heart of the issues about which he writes.

The entire article is worth reading, but for the purposes of this blog post, I will just give you the “executive summary.” The eye has always been a problem for flagellate-to-philosopher evolution. Not only does it seem so obviously designed, but developing an evolutionary history of the various eyes we see in nature has led to the incredible conclusion that eyes must have evolved independently in multiple evolutionary lineages. Nevertheless, those who fervently believe in evolution as a creation myth are convinced that it must have happened somehow. As a result, they tend to jump on anything that might support their fervent belief.

Enter Dr. Dan-Eric Nilsson and Dr. Suzanne Pelger, who published a scientific article entitled “A Pessimistic Estimate of the Time Required for an Eye to Evolve.” In this article, they sketch what they think might be a path by which a small circle of light-sensitive cells surrounded by a dark pigment and covered with a protective layer of tissue might evolve into a camera-type eye. In a series of eight drawings that they came up with in their own minds, they show how that circle of light-sensitive cells might form a depression, add a lens, and eventually come to resemble some of the eyes that we see in nature.

They measured four aspects of each drawing and assumed that those aspects could each change by 1% for every evolutionary step that was taken towards the next drawing. In the end, they estimated that it would take 1,829 steps to get from the first drawing to the last one. Using a simple equation that tries to estimate how many generations it takes to produce each evolutionary step, they arrived at the conclusion that it would take only 363,992 generations to get the job done. Since some organisms with eyes have generations that last a only a year, they suggest that in some cases, eyes could evolve in a mere 363,992 years.

Continue reading

DNA Is Even More Complex Than We Thought!

Illustration of the i-motif structure of DNA formed from the standard double-helix structure.
(This figure is from the scientific article being discussed.)

DNA is a wonderfully complex chemical that we are still a long way from fully understanding. Its ability to store information is amazing. Experiments indicate that a single gram of DNA (a gram is approximately the mass of a U.S. dollar bill) can store 500,000 CDs worth of information! It uses a complicated system of alternative splicing so that a single region of the molecule can store the information needed to produce many different chemicals (see here and here, for example). It is so complex that even the best chemistry lab in the world cannot produce a useful version of it. In the end, the best human science can do is make tiny sections of DNA and then employ yeast cells to stitch those segments together so that they become something useful.

In 1953, American biologist James Watson and English physicist Francis Crick published a landmark paper describing the structure of DNA that we have all come to know: the double-helix. Since then, however, scientists have discovered at least 10 other structures that DNA can take on. One of the more interesting ones is called the i-motif structure, which is illustrated above. Rather than the well-known double-helix, it is a four-stranded, interlocking ladder.

This rather bizarre form of DNA was first discovered as a structure produced in the lab, and many biochemists thought that it couldn’t exist in most living organisms (especially humans), because it tends to form in acidic conditions. Human blood is just slightly basic (pH between 7.35 and 7.45), so it was thought that i-motif DNA wouldn’t be found in human cells. However, a new paper provides very strong evidence that i-motif DNA not only exists in human cells, but that it is constantly forming and unforming based on what is going on in the cell!

The researchers decided to look for this form of DNA in human cells by making an antibody that would bind only to the i-motif form of DNA. They tagged the antibody with a fluorescent dye that would glow green when the antibody attached. They demonstrated that the antibody was faithful to bind only to that form of DNA, and they put the antibody in the nucleus of a human cell. Using a microscope, they were able to see antibodies glow in several different places, indicating that i-motif DNA was, indeed, present in the nucleus.

What’s even more remarkable, however, is that the glowing regions turned on and off. This indicates that the i-motif structure was being made from the double-helix form and then transformed back into the double helix form. Why? There’s no solid answer to this question, but the researchers noticed that i-motif DNA tended to form a lot during transcription. If you don’t recognize that term, in order to make a protein, the cell must read the “recipe” for that protein from the DNA and then send that recipe to another place in the cell to make the protein. The first part of that process (reading the DNA) is called transcription, and the second part (turning it into a protein) is called translation. That means i-motif DNA is formed more frequently when the cell is starting the process of making a protein.

Because of this, the researchers suggest that the i-motif form of DNA provides some sort of regulation in the production of proteins. After all, the cell not only needs to know how to make proteins, but it also needs to know when to make them and how much to make. The “how” part is something we know pretty well. The “when” and “how much” parts are still quite mysterious to modern science. We have uncovered (and partially understood) some of DNA’s regulatory mechanisms, but as this new discovery of i-motif DNA in human cells indicates, we still have a long way to go.

DNA is just one of the many marvels in Creation that testify to the design ingenuity of the Creator, and the more we learn about it, the more I stand in awe!

Another Mother’s Day Drama

“Following Mommy” by Heldara Baltica (click for credit and license)

Yesterday was Mother’s Day, and once again, I came up with a short skit for church in honor of the event. Over the years, I have created several Mother’s Day skits, and I have posted two of them (see here and here). Interestingly enough, the first link is my most-viewed post for this year. Since that indicates at least some interest in Mother’s Day skits for church, I thought I would go ahead and post this new one as well.

Before I share the script, I would like to make a couple of notes. The only “set” I used for this skit was a single chair at center stage. I had a spot on the chair, and it was “loose” enough for the father to be seen well as long as he stayed close to the chair. You can put crumpled-up sheets of paper around the chair to indicate that Jack has been working hard, but that’s not necessary. Also, both readings (the bad poem at the beginning and the heartfelt note at the end) can be written in Jack’s notebook already, so that he need not memorize either piece. Finally, there is no reason for Jack to be a young man. You could change the name to Jill and use a young woman instead.)

As always, you are free to use this skit in any way that might edify the body of Christ. I would like to be credited if possible, but more importantly, I would like Christ to be glorified.

Continue reading

It is Now a Risk to Promote Free Speech in Science!

Artwork by Newtown grafitti (Click for license)

Dr. Adam Perkins is a personality researcher at King’s College London (KCL). On March 16 of this year, he was scheduled to give a talk to a group on campus. However, that same day, the college’s events office informed him that they had deemed his talk a high-risk event and did not have time to organize the security that kind of situation would require. Thus, the talk would have to be postponed. What was the title of this high-risk talk? It was:

The Scientific Importance of Free Speech

Why in the world would that title cause KCL’s events office to consider the event to be risky? As far as I know, the office hasn’t answered that question. Perhaps it got skittish after thugs stormed into a debate that was taking place at KCL and violently stopped it. Perhaps they were afraid that the group which arranged the talk (the KCL Liberterian Society) was so controversial that any event it arranged would have to be treated as high-risk. Perhaps they thought that promoting free speech in science is just too controversial.

Regardless of the reason, the very fact that such a speech needs to be given indicates the depths to which parts of the culture have sunk. When professors actually have to remind students how important it is for scientists to be able to openly and honestly debate their ideas, you know that something is terribly wrong.

Despite the fact that the event was cancelled, Dr. Perkins has published an abbreviated version of his talk here. While I strongly recommend that you read the entire article, here is the most important point that Dr. Perkins makes:

When one side of a scientific debate is allowed to silence the other side, this is an impediment to scientific progress because it prevents bad theories being replaced by better theories.

As I have stated before (see here, here, and here, for example), anyone who promotes censoring scientific ideas because they go against the current “consensus” is decidedly anti-science.

Michael Behe Earns a Well-Deserved Honor

Fossil of an extinct form of dragonfly that was named for Chris Moore and Michael Behe. The black line indicates a distance of 10 millimeters. (click for source, which includes a link to the license.)

Dr. Michael Behe is an icon in the intelligent-design movement. His book, Darwin’s Black Box, was an important early contribution to the intelligent-design movement, but more importantly, his most famous peer-reviewed paper put forth the idea that the majority of adaptive changes occur as a result of loss or modification of a pre-existing molecular function. This view, of course, puts a serious limit on the amount of evolutionary change that can occur as a result of random mutations guided by natural selection. The world’s longest-running evolution experiment seems to confirm this view (see here, here, and here).

Now please understand that Dr. Behe is no creationist. He believes in common descent, but his work indicates that it cannot be accomplished by random mutations guided by natural selection. In his book The Edge of Evolution, he explores how much such a process can change an organism and shows that it has severe limitations. In the end, he thinks that when the Designer created the first cell, He/She/It “front-loaded” all of the information into the cell’s genome, allowing evolution to proceed in a designed manner. I don’t think that’s a reasonable hypothesis, but I admire Dr. Behe for following the data and proposing something that most scientists find heretical. I also admire his ability to take the scorn that has been heaped on him and continue to persevere. Even though I think his particular hypothesis is wrong, he is doing science a service by challenging a hypothesis that is most certainly wrong.

As a result, I was happy to see that Dr. Behe (along with famous fossil-hunter Chris Moore) has been honored by having a species of dragonfly named after him. The fossil was in Chris Moore’s collection, but Mr. Moore didn’t know that it comes from a previously-unrecognized species. However, Dr. Gunter Bechly, world-renowned paleotologist and former curator at the Stuttgart Museum of Natural History, saw a picture of the fossil and thought it looked unique. As a result, he asked Mr. Moore to send him the fossil so that he could study it closely, and he confirmed that it did, indeed, represent a new genus and species. In his peer-reviewed paper, he officially names it Chrismooreia michaelbehei.

Why did Dr. Bechly choose this name? His analysis indicates that there is no genus for this extinct form of dragonfly, so he named the genus (the first part of the scientific name) after Mr. Moore, since he was kind enough to lend his fossil to Dr. Bechly for study. The species (the second part of the scientific name) is named in honor of Dr. Behe, because as I have written in a previous article, Dr. Bechly was originally an apologist for Darwinism. However, the works of intelligent design authors allowed him to see that the data do not support the evolutionary hypothesis, and like any good scientist, he decided to follow the data and stop promoting Darwinist propaganda. Since Dr. Behe’s book The Edge of Evolution was a major influence in this process, Dr. Bechly thought it was an appropriate honor.

Well done Dr. Behe. The honor is way overdue!

A Homeschooling Mother Looks Back on Her Journey

A Facebook friend of mine named Ginger Linthicum Narmour is finishing up her last year of homeschooling. She posted a wonderful summary of what her experience has meant to her, and with her permission, I want to share it with you. I pray that every homeschooling mother can look back at her experience with such joy and wonder!

This spring is poignant for me since it marks my very last year of homeschooling. The Lord called us so long ago as Michael and I were contemplating which educational road we should walk down with our daughter, Courtney. Living in the beautiful Pacific Northwest at the time, we walked along the beach one moonlit night and felt that call to travel a road that was unfamiliar, one often criticized and thought second-best. Armed with supplies and a few books penned by the brave veterans that paved our way, we embarked on the most beautiful journey this mama (and daddy) could have ever hoped to enjoy.

I remember hearing her first words read. I still see the new colored pencils in her hand sketching views from her upstairs window. Then the joy of adding a second student, Lindsey, and breathing the sweet, salty air on daily walks with cooing baby and budding biologist in tow, all around the Navy housing neighborhood down to the beach, the park, the library. I’m remembering the family “field trips” to apple orchards and nature estuaries and museums and whale watches and picnics at parks with trees as green and tall and lush as any this Texas girl could have ever dreamed of seeing in person. Such are the things of heaven on earth.

Moving back home to Texas brought blessing number 3, Caitlin, and we were now a homeschooling family of 5. What precious memories of personal phone calls with best-selling curriculum authors who shared their talents freely with me, African tents in the living room and museum visits and struggles with spelling and beautiful books read faithfully every night by a precious daddy to his beloved daughters. I can still remember their eyes watching him read. Molding soft hearts and minds; lighting those fires. What a perfect job to be blessed with!

Moving to Arkansas brought blessing number 4, Kelsey, and our little family still sat together for read-alouds and music concerts and physical science videos and math facts practice and cooking exotic meals for geography lessons. Waiting with such expectancy for the haggard mail carrier to bring us yet another box heavy with carefully-chosen books for the next year. We just couldn’t wait to start again. Ah, all the pictures taken, the memories made. A more lovely life for me would not have been possible.

Years passed, a new Virginia home, the God-inspired talents bubbling over, college successes, hard lessons learned, characters molded and mellowed, fruit ripening, blessings heaped upon blessings. The hard work, the struggles with life and the laundry and the never-ending dirty dishes and impossible curriculum fair purchase decisions, I wouldn’t trade a minute of any of it.

So this last month of our school year is coming up. I see the books slowly being finished one by one and being placed on shelves or in boxes to pass on to new families who are beginning or continuing their studies. The melancholy ache of sweet times drawing to a close. I never intended to finish this journey without my beloved but the Lord has strengthened me to finish the race with happiness and joy. I am content.

Just a few more weeks to go and I will hang up my old ‘denim jumper’ and call my homeschooling days a blessed success. All I have to do is look at their beautiful faces, their beautiful souls.

Once Again, Don’t Believe Facebook When It Comes to Science!

Cyclone Larry near northeast Australia (left) and Hurricane Hernan near Mexico (right). Notice that the rotation in the Southern hemisphere is clockwise, and the rotation in the Northern Hemisphere is counterclockwise.
(Images Courtesy of NASA/GSFC, by Jeff Schmaltz and Jacques Descloitres)

A few months ago, I posted an article about how you should not believe Facebook memes and videos when it comes to science. Of course, I have seen more scientific nonsense on Facebook, but lately the following video keeps popping up on my feed:

When I see it, I generally comment that the video is a clever con. It is based on a scientific concept that is quite true, but it does not apply to situations that involve short distances. Most of my Facebook “friends” express appreciation for me pointing out the error, but one of them was adamant for a while that the video shows a real truth. In my efforts to educate him, I ended up finding a really nice video resource, which I will share after my long-winded statements on this issue.

Continue reading

1 4 5 6 7 8 9 10 93