A Very Promising Possibility for COVID-19 Treatment

A person using an inhaler, which is the way the drug in the study is delivered (click for credit)

There are several drug treatments that are currently being investigated for COVID-19. However, of all the studies I have seen so far, this one looks the most promising. In the study, UK-based Synairgen chose 101 hospital patients and randomly assigned them to get a placebo or a chemical called “interferon beta,” a protein that has antiviral properties and is naturally produced by the human body. Both the placebo and the protein were administered through inhalers so that they ended up in the lungs. Over the roughly two-month study, patients getting the protein were 79% less likely to develop severe symptoms that required a ventilator. Also, while three of the patients who received the placebo died, none of those who received the protein died.

The study seems well designed. For example, patient ages were very similar. The placebo group’s average age was 56.5 years, while the protein group’s average age was 57.8 years. The difference is very small, but note that it favors the placebo group. In other words, since the patients getting the placebo were younger, they were automatically a bit less at risk than the protein group. In addition, the average amount of time the patients exhibited COVID-19 symptoms before getting the treatment was very similar, 9.8 days for the placebo group and 9.6 days for the protein group.

I do, however, see two potential problems. First, the number of patients in the study is small. As a result, they made a lot of other interesting observations, but they couldn’t determine whether those observations were the result of the protein or random chance. For example, the patients who received the protein were roughly twice as likely to recover within the two-month period than the ones who did not receive the protein. However, because the number of patients is so small, mathematics tells us it is possible that this result is caused by chance and not by a difference between the placebo and the protein.

The other problem, of course, is that this study was performed and reported by the pharmaceutical company that wants to produce and sell the drug. Initially, of course, this makes sense. Studies cost money, so the company that wants to make and sell the drug should spend the money to do the studies. However, before the drug can be approved for general use, there will need to be a larger study with independent analysis. I eagerly await that kind of study.

Dr. Fauci, Americans Believe Science, but They Don’t Believe Many Scientists (For Very Good Reasons).

Dr. Anthony S. Fauci, director of the National Institute of Allergy and Infectious Diseases (click for credit)
Dr. Anthony S. Fauci, director of the National Institute of Allergy and Infectious Diseases and one of the lead members of the White House Coronavirus Task Force was recently on the US Department of Health and Human Services’ podcast, which is called “The Learning Curve.” It exists so people can hear from experts in the department, learning what those experts are doing and what they think you should know. Obviously, Dr. Fauci was on to discuss the COVID-19 pandemic.

While some of what he said on the podcast was valuable, he made one statement that shows he is completely out of touch with most people in the United States:

One of the problems we face in the United States is that unfortunately, there is a combination of an anti-science bias that people are — for reasons that sometimes are, you know, inconceivable and not understandable — they just don’t believe science and they don’t believe authority…

Now, of course, you can always find people who don’t believe science for a variety of reasons. In my experience, however, they are few and far between. The majority of people in the United States hold science in very high regard. For example, Scientific American recently conducted a poll that found 90% of the people they surveyed wanted science to have a significant influence on society. An additional 7% wanted science to have some influence, which leaves a mere 3% that wanted science to have no influence at all. This is consistent with what I see around the nation. Most people believe science, some are skeptical, and very few think it has no value.

If people in the United States believe science, why does Dr. Fauci think they don’t? Because he is confusing science with scientists. As a scientist myself, let me put this very bluntly: In general, you can trust science. However, you cannot trust many scientists. Why do I say this? The Scientific American article linked above gives one reason: Many scientists have values that conflict with the majority of people in the United States, and those values affect how they interpret the science they know. For example, when a scientist doesn’t recognize that this world is a product of design, he or she will be led to all sorts of false conclusions. When the scientist communicates those false conclusions as if they are absolute fact, many reasonable people end up distrusting him or her.

But the Scientific American article linked above misses the more important reason people don’t trust scientists. It’s because scientists regularly make statements that they claim are absolutely true, but eventually, those statements are shown to be false. I highlighted a recent example a year ago. Visitors to Glacier National Park were told that computer models indicated the glaciers they are admiring will be gone by 2020. Well, it’s 2020, and the glaciers are still at the park. So what did the scientists do? Did they admit to their mistake? No. They quietly removed the signs, hoping the mistake would go unnoticed. In this day and age, however, such things rarely do.

The nonsense about the glaciers isn’t an isolated example. Time and time again, scientists make pronouncements and even take action based on ideas that they claim are absolutely true, but end up being utterly false. It was thought for a long time that the human appendix was a useless remnant of evolution. This silly notion was believed by surgeons, so many would remove the appendix from a patient having abdominal surgery, even if the appendix was entirely healthy. We now know that the appendix is an important lymphatic organ, and people without an appendix are more likely to have difficulty recovering from certain intestinal diseases. Tonsils are another example. It was once common practice to remove inflamed tonsils rather than treat the inflammation with medicine, because tonsils were supposed to be a leftover vestige of evolution. People who were unfortunate enough to be treated by someone who believed such nonsense (me, for example) are much more likely to suffer from respiratory, allergic, and infectious diseases. The fact that scientists routinely make definitive statements which are later shown to be wrong is so well-known that it is the subject of comedy routines.

In the end, scientists have themselves to blame when it comes to people not believing their pronouncements. They have betrayed the public trust too many times, because they have forgotten that by its very nature, science is tentative. Thus, it cannot be used to make grand pronouncements of absolute truth. Scientists have to realize that they are not priests. They are people who have expertise, but that expertise is based on a method of inquiry which routinely produces false conclusions. Rather than making grand pronouncements about the “truth,” they should show people the evidence and explain how they interpret the evidence. If they don’t communicate science that way, the public has no choice but to distrust them.

Are Hydroxychloroquine and Azithromycin Effective Against COVID-19?

Dr. Didier Raoult, French physician and microbiologist who thinks he has an effective treatment for COVID-19 (click for image source)
Two weeks ago I wrote about a possible treatment for COVID-19, the pandemic disease that is affecting most of our lives. It has been championed by French physician and microbiologist Dr. Didier Raoult. So far, he has written two papers about it (here and here). I was excited about his initial report, and I was hoping for a serious follow-up study. When I saw that he had written a second paper, I eagerly read it. Unfortunately, it wasn’t the serious study that I had hoped for. Nevertheless, it has gotten some media attention and seems to have influenced the FDA, so I decided to share my thoughts on it.

The results seem very exciting. He and his colleagues treated 80 patients with the malaria-fighting drug hydroxychloroquine and the antibiotic azithromycin. They note that they saw “clinical improvement” in 78 of them. One of the other two (an 86 year-old patient) died, and the other (a 74 year-old patient) was still in intensive care when the paper was written. While that sounds really good, there are a couple of “red flags” that make me hesitant to think that the treatment is as effective as it seems.

The first problem is that there is no control group. In a serious medical study, there needs to be a similar group of patents who do not receive the treatment. The treated group can be then measured against the untreated (control) group. Without that, it is very difficult to determine what the actual effect of the treatment is. Of course, I understand why there is no control group. Dr. Raoult wants to save lives. He thinks his treatment is effective, so he wants to give it to as many people as he can. He would have to “withhold” his life-saving treatment from some people so that he could have a control group, and that could lead to more deaths. I can understand why a physician would shudder at that idea.

However, the control group is important, because we really have no idea what would have happened to the 78 people who recovered had they not been given the treatment. While we still don’t know, the fatality rate of this disease is thought to be 1-2%. In 80 people, then, you would expect only one or two (0.8-1.6 to be precise) deaths, so this group of patients has the fatality outcome we expect had there been no treatment at all.

Now, of course, Dr. Raoult and his colleagues did more than just track whether or not the patients died. They tracked the amount of virus in each patient’s nasal cavity and found that the amount of virus dropped significantly for most of them. Once again, that sounds nice, but without a control group, we simply don’t know whether or not that was because of the treatment.

The second problem is the profile of patients who got the treatment. They mostly seemed to have a mild case of the disease. Only 15% had fever. Only 53% showed signs of lower respiratory tract infection. Worse, 5% showed no symptoms at all. Once again, it isn’t surprising that most of these patients recovered – most of them fit the profile of people who are expected to recover.

There is a third problem. A scientific study has been done in China with a control group. It is very small, and I can’t read it, since it is in Chinese. However, based on a Forbes article, the study had 30 patients. Half were given hydroxychloroquine, and half were not. That study showed no significant difference between the control group and the treatment group. Thus, if that study is correct, hydroxychloroquine is not an effective treatment for COVID-19.

Now, of course, that study didn’t include the antibiotic, so it’s possible that Dr. Raoult’s treatment is better than the treatment assessed by the study. It’s also possible that because of problems with the Chinese study’s design (small number of patients and no placebo, for example), the Chinese study is wrong. From a scientific point of view, then, we simply do not know whether or not Dr. Raoult’s treatment (or hydroxychloroquine by itself) is effective against COVID-19.

Nevertheless, the FDA has approved using hydroxychloroquine and other, similar drugs to treat COVID-19. This is probably a good plan, since the risks of using the drugs are low. However, until serious, controlled studies are done, we have no idea whether or not they are doing any good.

A Possible Treatment for COVID-19

A transmission electron microscope image of the coronavirus SARS-CoV-2. The spikes surrounding the virus make it look like a crown, which is where it gets its name. (click for credit)

While countries are scrambling to prevent the spread of COVID-19 (the disease caused by the new coronavirus), doctors are trying to find the best treatment for it. In three separate studies, a surprising candidate has been found: the anti-malarial drug chloroquine. In a letter that was published on February 19th, three Chinese scientists reported that more than 100 patients were given the drug. Based on the patients’ responses, they write:

…chloroquine phosphate is superior to the control treatment in inhibiting the exacerbation of pneumonia, improving lung imaging findings, promoting a virusnegative conversion, and shortening the disease course…

The authors also report that there were no adverse side effects noted in the patients.

A report in Spanish (translation here) concurs. It discusses both the results seen in patients and the results of experiments where primate cells are infected with the virus and then treated with chloroquine. The conclusion is as follows:

Chloroquine can both prevent and treat coronavirus in primate cells…According to South Korean and China human treatment guidelines, chloroquine is effective in treating COVID-19. Given chloroquine’s human safety profile and existence, it can be implemented today in the U.S., Europe and the rest of the world.

Finally, a study published in the journal Nature confirms that when primate cells are infected by the virus that causes COVID-19, both chloroquine and an antiviral drug known as remdesivir were effective at fighting it. The researchers state:

Our findings reveal that remdesivir and chloroquine are highly effective in the control of 2019-nCoV infection in vitro. Since these compounds have been used in human patients with a safety track record and shown to be effective against various ailments, we suggest that they should be assessed in human patients suffering from the novel coronavirus disease.

Now, of course, these studies are far from conclusive. However, I expect that doctors will judiciously test the treatment on patients who volunteer for it. Hopefully, that will allow us to learn more. Perhaps an effective treatment is on the horizon!

More Thoughts on the New Coronavirus

An infographic adapted from one produced by the CDC (click for larger version)

A few readers have sent me questions regarding the coronavirus that is spreading across the world, so I thought I would make a post answering those questions and providing some resources you can use to deal with the issue. Please note, however, that I am neither a medical doctor nor a biologist. As a result, I don’t claim any expertise on the matter. However, there are some misconceptions about the virus that are easily cleared up, and there are some facts that anyone who can understand the scientific literature should share.

First, a few facts. The term “coronavirus” refers to a very large group of viruses that circulate mostly among mammals and birds. However, some are able to infect people. Most coronaviruses that infect people produce mild illnesses, but some (like this one) produce potentially fatal ones. The coronavirus that is in the news right now is one that has not been seen before. This is not unusual. When an animal is infected with two different versions of the coronavirus, they can mix together, producing a new (usually called “novel”) coronavirus. This particular novel coronavirus has been charmingly named SARS-CoV-2, and it causes the disease referred to as COVID-19. Because of that, it is sometimes referred to as the “COVID-19 virus.”

The reason it has been given the name SARS-CoV-2 is that its genetic sequences indicate it is very similar to the virus that caused the SARS outbreak of 2003. Based on that sequence, it is thought that the virus originated in bats, but it might have passed through another animal (possibly a scaly anteater) before infecting people. Most importantly, there is strong evidence against the idea that it was genetically engineered. This is because the way it infects people is quite different from what would have been predicted given our current knowledge about these viruses. In other words, it is very hard to believe that anyone knowledgable enough to engineer a virus would purposefully make the genetic sequences that end up allowing the virus to be so good at infecting people.

The illness caused by this virus is flu-like, but it is much more serious than the flu. The death rate caused by the flu changes from year-to-year, depending on the strains that circulate. However, on average, the flu has a death rate of about 0.1%. That means for every 1,000 people who get the flu, 1 will die. Even though that is a low death rate, a lot of people get the flu. As a result, millions of people die from the flu every year. We don’t know the death rate for this new virus, since we don’t really know how many people have actually been infected, but the best estimate so far is that the death rate is about 2%. That means this virus is thought to be 20 times more deadly than the flu virus.

Second, the resources. The infographic above has been adapted from one that was produced by the CDC. The university at which I teach has asked all its professors to post this electronically as well as wherever students might be found. It is basic, but nevertheless, it does contain some helpful information. This link will take you to the latest information regarding where the virus has been detected, how many people have been infected, and how many people have died.

In general, the best way to avoid being infected by this virus is to avoid other people and avoid going to places where it has been found. The virus spreads most effectively when an infected person is within a few feet of an uninfected person. However, it might also be transferred by surfaces. If someone sneezes on a surface and someone else touches that surface, the virus can be transferred to the hand. Then, if that person touches his or her mouth, nose, or eyes, it is possible for the virus to begin an infection. Thus, you need to wash your hands a lot and avoid touching your eyes, nose, and mouth in between washings.

The most important thing to remember is that while the illness caused by this virus has a death rate that is thought to be about 2% on average, it is significantly higher for elderly people, people who are already sick with something else, and people with weakened immune systems. Thus, if you show any of the signs of the illness (fever, cough, shortness of breath) and think you might have been in contact with someone who has the virus, you should seek medical help.

While there are several groups working on a vaccine to prevent the spread of the virus, the earliest a vaccine could possibly be ready would be at least a year from now. My guess, given that I am anything but an expert about these things, is that it will not be needed. The disease seems to have already plateaued in China, and I expect other countries to be a bit better at reducing the spread. Thus, I expect that the spread of the disease will slow down significantly before a vaccine can be approved for use. I could easily be wrong about that, however.

That Virus in China

People in China wearing surgical masks. Photo copyright shutterstock/testing.

If you haven’t been paying a lot of attention to the international news, you might not know that there is a serious virus spreading in China. As of yesterday at 3 PM Eastern, 640 people have been infected, and 17 have died. Most of the cases are in China, where the virus originated, but there have been four cases in Thailand, two in Vietnam, and one each in Japan, South Korea, Singapore, and the United States. While there is always a chance that the virus could produce a pandemic, officials in China seem to be doing all they can to keep that from happening.

Several cities have suspended bus and train service in an attempt to keep people the virus from spreading through travel. The city in which it originated (Wuhan) has been completely shut down. A colleague of mine says that her son is in that city, and all transportation has ceased. Businesses (even grocery stores) are not allowed to open. People must make do with the food they currently have until the government decides that it is safe for businesses to open again. Currently, they are hoping to allow businesses to open on Tuesday. The virus is very dangerous, but the Chinese government seems to be taking it seriously. Only time will tell if their efforts will be enough.

What is this virus? It is a strain of coronavirus, which causes respiratory infections. It usually gets spread from animal to human, but in some cases, it can be spread from human to human as well. This version of the virus seems to be one of those. Most coronavirus infections produce mild symptoms. In fact, nearly everyone has had a coronavirus infection at one time or another. However, the severity of the infection depends on the proteins that the virus carries. The SARS epidemic of 2003 was caused by a particularly virulent coronavirus, resulting in more than 770 deaths worldwide. The hope is that the spread of this coronavirus can be better contained.

Why did it just appear? When the cell of an organism is infected with two different viruses, a new virus, called a recombinant virus, can be produced, mixing characteristics from each. That seems to be what has happened here. According to a study that was just published, it looks like the virus is a combination of a bat coronavirus and another one that cannot be identified. The study looked at the way the proteins are coded, and the authors claim that the most likely animal that spread the virus is a snake. That would be odd, since coronaviruses are only known to infect mammals. However, Wuhan does have open markets where live snakes are sold, and since that’s where the virus originated, it could have come from a snake.

Regardless of what animal it came from, once this new virus (which is really just a combination of two old viruses) was produced, it then was transmitted to a person. Once again, that’s usually the way a coronavirus is spread to people, but this one has been confirmed to spread from human to human, which is why China is clamping down on travel. The virus can be spread through the air, through personal contact, or from touching a surface that has the virus on it and then touching your mouth, nose, or eyes before washing your hands. Because of this, many people in China are wearing masks like you see in the photo above (which was taken a long time ago), and they are washing their hands regularly. Currently, there is no cure for the viral infection. The best thing that can be done is to treat its symptoms (fever, cough, and breathing difficulties) so that the body’s immune system has time to conquer it.

We should pray that the Chinese government is taking this situation as seriously as it seems to be, so that a deadly epidemic is averted. Also, we should pray for the people in the cities that are on lockdown. Not only are they the ones most at risk for the infection, but their lives have also been severely disrupted. Some may even have to deal with hunger or thirst caused by the precautions that are being taken.

UPDATE (02/26/2020): Here is an analysis from the WHO. If it is correct, then the epidemic is declining, and the fatality rate outside Wuhan is much less than what was originally feared.

UPDATE: My colleague, whose son is in Wuhan, says that the grocery stores were open on Sunday (January 26th) and well stocked. He was able to buy enough food to last a month if necessary. According to him, there was no panic. However, the city is still on lockdown, and the infection is still spreading. As of the morning of Monday, January 27th, there have been five confirmed cases in the U.S. Not of the U.S. cases have resulted in death, but at least 56 are dead in China.

A Dirty Childhood Can Lead to a Healthy Life

A happy child plays in a muddy river (photo copyright Shutterstock/Christin Lola)

One of the proposed explanations for the rise in allergies seen in the industrialized world is the hygiene hypothesis. It argues that many children who live in industrialized nations are raised in an environment that is just too clean. Because of this, they are not exposed to infectious and foreign agents that properly “train” their immune system. In addition, they miss out on some of the good bacteria and fungi that would take up residence in their body and support their immune system. As a result, the natural development of the immune system is stunted, and the body doesn’t know how to properly respond to certain assaults.

While there is a lot of good indirect evidence to support the hypothesis, the only controlled studies that support it have been done on mice. Of course, it is hard to do a controlled study on people, because you would have to get two similar groups of people and force them to live in different environments (one clean and one dirty) for a long period of time, and that’s just not practical. However, I recently came across a study which comes close to doing that, and the results strongly support the hygiene hypothesis.

The authors cleverly made use of an artificial separation of people that occurred more than 70 years ago. At the end of World War II, Finland had to give up some of its land to Russia, creating a new border between the two countries. Over time, the people who lived on either side of the border developed very different lifestyles. The Russian side of the border stayed largely agrarian, while the Finnish side became more urban. Since these two populations started out very similar but ended up very different, the authors decided to compare their susceptibility to allergies, and the results were rather astonishing.

In 2003, the authors randomly selected 98 Finnish children and 82 Russian children who were 7-10 years of age. They took skin samples and nose mucus samples, and they asked the parents to report on the childrens’ susceptibility to certain allergies. They also measured the sensitivity to certain allergens by looking at chemical levels in their blood. They then did a follow-up study of the same children roughly 10 years later. The results remained consistent between the initial and follow-up studies: The Finnish children were three to ten times more likely than the Russian children to have allergic reactions like asthma, hay fever, eczema, and a runny nose.

When the authors examined the skin and nose mucus samples, they found that the Russian children had a lot more bacteria in their skin and mucus than the Finnish children. In addition, the diversity of bacterial species was much greater in the Russian children. So the children who had more bacteria and lots of different species of bacteria living in and on their bodies were less likely to have allergies!

The authors specifically note that the largest disparities between the two groups were in bacterial species from the genus Acinetobacter. As the authors state:

Our results also suggest that high abundance and diversity of Acinetobacter might contribute to the low allergy prevalence in Russia. Implications of early‐life exposure to Acinetobacter should be further investigated.

In other words, the authors think that at least part of the reason that the Finnish children had more allergies is that they weren’t exposed to enough Acinetobacter. Where do these bacteria live? In dirt and water. So based on the results of this study, children who grow up doing things like the child in the picture at the top of the post are less likely to develop allergies later in life!

As a creationist, this doesn’t surprise me at all. God created us to interact with His creation, and when we try to isolate ourselves from it, we suffer.

When Is a Person Actually Dead?

A student recently sent me an article from Live Science that reports on a man who was declared dead by three doctors. Four hours later, as he was being prepped for an autopsy (the marks to guide the autopsy had already been put on him), he started snoring! As of the time the article was written, he was alive and in the intensive care unit of a hospital. The student asked how such a thing could happen. Was it incompetence on the part of the doctors, or is it difficult to tell whether or not a person is dead? I told the student that while I couldn’t address the details of this particular case since I wasn’t involved, I could tell him that there have been cases over the years where the experts were convinced that a person was dead when, in fact, that person wasn’t.

I first heard this kind of story when I was preparing for a talk about miracles. I ran across the case of Emma Brady. She had been declared dead after exhibiting no vital signs. She was placed in a body bag and taken to the morgue. When her children arrived about an hour later to say their goodbyes, they found her gasping for air. The administrator of the hospital said that after the family told a nurse about what they had seen:

Miraculously, the patient exhibited vital signs that were absent previously.

Over the years, I have kept my eye out for stories like this, and while they are rare, they are most certainly not unheard of.

Consider, for example, the story of Steven Thorpe. At age 17, he was in a tragic accident that killed one of the other occupants of the automobile. He was put in a medically-induced coma, and a team of four physicians told his parents that he was brain dead. They suggested that his organs be donated to help others. However, the parents brought in an additional doctor (a neurologist), who demonstrated faint brain activity. The doctors at the hospital agreed to bring him out of the medically-induced coma, and Thorpe recovered. He left the hospital five days later and at the time the article was published, he was alive and well.

Once again, while these stories seem rare, they are not unheard of. In 2008, Zack Dunlap was in an automobile accident and was declared dead 36 hours later. However, he wasn’t dead. In fact, he says that he actually heard his doctors saying that he was dead. The hospital made plans to harvest his organs, since his driver’s license said that he was an organ donor. However, as his family was saying goodbye, one of his cousins (a nurse) decided to pull out his pocket knife, hold Zack’s foot, and scrape the knife against it. Zack pulled his own foot out of his cousin’s hand. The family took it as a sign of life, and they argued that the hospital should treat Zack as if he were alive. He ended up making a full recovery.

The bottom line is that while we have amazing technology and a lot of knowledge about human anatomy and physiology, there are limits to what we can detect and what we can conclude. While it is sometimes very obvious that someone is dead, there are other times when even the experts can be fooled. That’s something all of us need to keep in mind when we deal with life and death issues.

A Cure For Cancer? Probably Not!

Cancer cells from human connective tissue (click for credit)

I started seeing it on my Facebook feed Tuesday. I started getting messages about it on Wednesday. It’s a news story of great interest to many people, and the headline says it all:

A CURE FOR CANCER? ISRAELI SCIENTISTS SAY THEY THINK THEY FOUND ONE

The news outlet that published the story is the Jerusalem Post. After it was published there on Monday, U.S. news outlets picked up the story. I suspect that nearly everyone in the U.S. knows someone who has been afflicted with some form of cancer, so the interest is understandable. The problem is that the story is almost certainly not true.

As far as I know, the Jerusalem Post is a credible news organization. Also, the people who have made the claim (Dan D. Aridor and Dr. Ilan Morad ) are credible people. Nevertheless, the claims are not credible, especially when you investigate them.

Aridor and Morad say that they are using “phage display” technologies to target proteins that are typically produced by cancer cells. This allows them to eliminate cancer cells without affecting healthy ones. This is already an active area of cancer treatment research, so the technique is a valid one. They claim that they have a special variation on the technique that will allow them to offer “a complete cure for cancer” within a year or so. If that sounds too good to be true, it probably is – especially when you see what the claim is based on.

Essentially, they say they have tested their technique on mice, and it works very well. Unfortunately, they have not published their results, so it is hard to know what that really means. They claim they don’t want to spend their time and money on writing up a publication. Instead, they want to concentrate on the research necessary to perfect the technique. That is understandable, and they might also be afraid that others could use their publication to “copy” their technique and beat them to the punch.

So let’s give them the benefit of the doubt. Let’s assume that they tested their technique on mice, and it was found to completely eliminate specific types of cancer in mice with no discernible side effects. That still doesn’t mean it will work in people! The gap between animal studies and human studies is huge, which is why many treatments that worked incredibly well in animals do very poorly when used to treat people. Now, of course, it makes sense to test a treatment on animals first, but to claim that a technique can go from early animal trials to human treatment in a year is naive, at best.

Also, to make a blanket statement that it will be “a complete cure for cancer” is silly, since there are so many different forms of cancer. It’s possible that their technique might be a great cure for some forms of cancer, but the idea that it will treat all (or even most) forms of cancer seems shockingly inconsistent with what we know about the nature of cancer itself.

Of course, no one will be happier than me if I am wrong. I have had skin cancer removed, and my wife recently had a cancerous breast tumor removed. Thus, a cure for cancer would clearly make me very happy. Nevertheless, I don’t think there will be one within a year, and even if there is one, I suspect that it will only be able to treat specific types of cancer.

LED Lights Might Pose A Hazard for Vision

Wavelengths coming from various light sources (image modified from the Tosini 2016 article linked below)
A very good friend showed me an article from the University of Toledo. It reports on a study that demonstrates how blue light might be damaging to the light-sensing cells found in your eye. I didn’t know anything about this, so I decided to look into the research that has been done on the effects of blue light on vision. I found this excellent review article, which discusses what has been figured out so far. The short answer is that we don’t know anything for certain, but there is some evidence that long-term, chronic exposure to significant amounts of blue light could be damaging to your eyes.

Several animal studies have shown that exposure to blue light can increase the animal’s risk of age-related macular degeneration (AMD) and other eye problems. However, studies on people haven’t been clear. Some studies have shown a relationship between long-term exposure to the sun’s light and AMD, and it is assumed that the blue light given out by the sun is the culprit. However, a case-controlled study in Australia indicated that it might not be exposure to the sun’s light that is causing the relationship. It indicates that sensitivity to glare and difficulty developing a tan are the actual indicators of higher AMD risk, and studies that show a relationship between the sun’s light and AMD might not be controlling properly for those variables.

The study that was discussed in the University of Toledo article linked above didn’t assess the damage blue light causes to human eyes. Instead, the authors assessed the damage on human cells. However, they didn’t use actual light-sensing cells from a human eye, because that’s not possible. They used HeLa cells, which are a line of cells that came from cancerous tissue taken from a woman named Henrietta Lacks more than 65 years ago. The cells continue to reproduce to this day, so this line of cells is often referred to as “immortal.” The story behind the acquisition of the cells is the topic of a very sad and interesting book as well as a pretty lousy movie.

Continue reading “LED Lights Might Pose A Hazard for Vision”