Rat Surgeons?

I have written previously about Australia’s cane toad problem (here and here). In 1935, cane toads were brought in to control a pest that was feeding on sugar cane in northeastern Queensland. They ended up being ineffective at controlling the pest, and because they have few natural predators there, Australia was ineffective at controlling them. They have been spreading out across Australia since 1935, and there is no end in sight to their population’s expansion.

As I have discussed previously, cane toads have already affected wildlife in the areas where they have become established. Because they are large (for toads) and the adults are poisonous to snakes, for example, the average head size of a snake has decreased in those areas with a significant cane toad population. After all, the snakes that have large enough heads to eat the adult toads die. As a result, snakes that can’t eat them (snakes with smaller heads) are significantly more likely to survive. They survive because they cannot eat what would kill them!

But there is another way to survive in the presence of cane toads: figure out a way to eat them without being poisoned. Based on the results of a recent study, it seems that one clever Australian predator has learned to do just that. The authors of the study were intrigued when they started finding cane toad bodies that had what appeared to be surgically-precise incisions on their bodies. They eventually set up some infrared cameras and found that golden-bellied water rats were the ones making the incisions.

It turns out that only the skin and certain organs (like the bile duct) in the frog are poisonous. If a predator can avoid those structures, it can eat the toads without being harmed, and apparently, the water rats have figured that out. The researchers found that the heart and liver had been removed in each dead cane toad, presumably eaten by the rats. In the largest toads, the skin of the legs was also peeled back and the leg muscles were eaten. The authors say that all of this was done with a high level of precision.

The question, of course, is how the rats figured this out. The researchers are not sure. They know that water rats feed on other toad species as well as the younger cane toads that aren’t as poisonous, and it may be that in this area, that’s the way rats eat all the toads they kill. It’s also possible that some rats just stumbled onto this technique and passed it on to their offspring. As the authors note, water rats care for their offspring for weeks after they have been weaned, so it would be easy for the young rats to learn how their parents are eating the toads. The researchers note that for now, this feeding technique is limited to the water rats in certain areas, but they suggest that it might spread as time goes on.

Add the Australian water rat to the ever-growing list of surprisingly clever animals (see here, here, and here.)

Why Do I Include God in My Science Texts?

13th-century illumination from the French Bible Moralisée, depicting Christ (who is God) creating the World.
I was asked that question a couple of days ago, but it wasn’t the first time. Over the years, several people have asked me why I write about God in my science textbooks. After all, science is about facts, while belief in God is about faith. Science doesn’t belong in religious texts, and God doesn’t belong in science texts. That may sound reasonable in today’s world, but it is simply dead wrong. In addition, it demonstrates a shocking level of ignorance about the history of science. Nevertheless, it is a good question, and it deserves a detailed answer.

First, there is an obvious philosophical reason: God is the source of all that science studies, so it only makes sense to discuss Him in the context of studying His creation. Consider, for example, teaching a course on U.S. Law. Would you try to teach it without referring to the U.S. Constitution? Perhaps. Maybe there are law professors who do just that, but for me, I can’t imagine discussing U.S. law without discussing the source from which it comes. In the same way, I find it pointless to discuss science without discussing its source.

Second, there are practical reasons to discuss God while teaching students about science. If we emphasize the fact that the things we study as scientists are designed, we give students a superior way in which to view the natural world. Those who want to reject the idea of a Creator God will try to convince students that this world was “thrown together” by random chance. As a result, students get the idea that creation is full of shabby constructions. Of course, nothing could be further from the truth. The designs found in the natural world make our best technology look like garbage. This has led one desperate atheist to write:1

Biology is the study of complicated things that give the appearance of having been designed for a purpose.

Of course, a more reasonable evaluation of the data leads us to the conclusion that biology is the study of things that have been designed for a purpose.

This is very important, because when we understand that biology is the study of designed things, we don’t fall prey to misconceptions that hold back the progress of science. How many lives have been wasted because scientists looked at the primary cilium as a evolutionary vestige rather than an antenna designed to receive signals? How long did scientists delay a more detailed understanding of genetics because of the nonsensical notion of “junk DNA”? How many people needlessly suffer relapses of intestinal bacterial infections because of the silly idea that the appendix is a vestigial organ? A scientist who understands that the natural world is designed is simply better able to interpret what he or she is studying, since it is the more realistic view.

Finally, there is a spiritual reason to include God in science. As Nobel laureate Dr. Arthur Leonard Schawlow once put it:2

But the context of religion is a great background for doing science. In the words of Psalm 19, “The heavens declare the glory of God and the firmament showeth his handiwork.” Thus scientific research is a worshipful act, in that it reveals more of the wonders of God’s creation.

Ever since I became a Christian, science has been a worshipful act for me. There is no way I could write about this worshipful act without including the One who is being worshipped!

REFERENCES

1. Dawkins, R., The Blind Watchmaker, W.W. Norton & Company, New York, USA, p. 1, 1986.
Return to Text

2. Cosmos, Bios, Theos, Henry Margenau and Roy Abraham Varghese, ed., Open Court Publishing 1992, p. 106.
Return to Text

What’s Really Causing Coral Bleaching?

The soft coral colony at the center of the picture is bleached. The corals to the right are not. (click for credit)

Coral are amazing animals. They live in a mutualistic relationship with algae, giving the algae a safe home in exchange for some of the food that the algae make through photosynthesis. The variety of colors seen in a coral reef are a result of this relationship. However, coral sometimes expel their algae, turning white. This is called “coral bleaching,” and it generally happens when the water is warmer than usual. the Australian Marine Conservation informs us:

Coral bleaching is a global crisis, caused by increased ocean temperatures driven by carbon pollution.

This has become a common mantra in the “global warming is going to kill us all” movement, because coral reefs are so fundamentally important to the health of ocean ecosystems. Indeed, it has become so important that if you question what the global-warming alarmists say, it can lead to dire consequences.

Consider, for example, the case of Dr. Peter Ridd. Some of his colleagues at James Cook University published work indicating that Australia’s Great Barrier Reef was on the verge of collapse because of global warming. Dr. Ridd dared to question that narrative, pointing out the data that indicate there is nothing unusual about the bleaching events that have been occurring at the Great Barrier Reef and that the reef has about the same amount of healthy coral as it did back in 1985. For that transgression, he was fired. While a court has ruled the firing unlawful, the university plans to appeal the ruling. Regardless of what happens at appeal, it is clear that the firing was anti-science. Criticism of data, even data related to sacred cows such as global warming, is the hallmark of good science. To squelch such criticism is a direct assault on the progress of science.

Of course, the real question is whether or not global warming is a threat to the oceans’ coral reefs. The answer remains unclear, but the balance of the evidence indicates that it is not. For example, one study of the Great Barrier Reef shows that bleaching events were more common several hundred years ago. According to that study, bleaching events hit their peak in the 1850s. There is also some indication that bleaching is an adaptive mechanism and is not necessarily bad for the health of a coral reef.

Continue reading “What’s Really Causing Coral Bleaching?”

Something I (and Most Scientists) Have Taught for Many Years is Probably Wrong!

One of the problems that science textbook authors face is the fact that science is constantly changing. As we learn more about the Creator’s handiwork, we find that the science we have taught as fact is actually incorrect. Sometimes, this is because the experiments upon which those facts are based were in error. Sometimes, it’s because our interpretations of those experiments were in error. Sometimes, it’s a result of making conclusions that go beyond what the experiments actually tell us. The practical upshot of all this is that some of the things you are reading in your science textbooks are wrong.

I recently found out that something I (and most other authors) have taught about DNA is probably wrong. Most people know that DNA is a double helix. As shown in the illustration above, those two helixes wind around each other, with the information-bearing units (called nucleotide bases) inside. In order for cells to use the information in DNA, those helixes have to be separated so that the sequence of the nucleotide bases can be read. That means the helixes need to be held together when DNA is not being used, and then they must be separated when it is time for the cell to read the DNA.

How does that happen? Well, according to most textbooks (including mine), it is because the nucleotide bases form hydrogen bonds with one another. Hydrogen bonds are weaker than true chemical bonds, but they can hold things together. As I say it in my textbook, Exploring Creation with Biology, 2nd Edition:

…the attraction between the atoms in hydrogen bonding is about 15% as strong as the attraction between two atoms that have a true chemical bond linking them. Thus, the hydrogen bonds in DNA are strong enough to keep the two chains together in a double helix, but they are significantly weaker than a true chemical bond. Since they are weaker than a true chemical bond, it is rather easy for the two helixes in DNA to unravel.

This sounds great, but a recent study indicates that it’s probably not true. If nothing else, it doesn’t tell the entire story.

Continue reading “Something I (and Most Scientists) Have Taught for Many Years is Probably Wrong!”

Large Study Indicates Genetics Has Little Influence on Sexual Orientation

I don’t normally write on topics like this, because studying human behavior is a tricky subject. There are all sorts of different explanations for a given behavioral characteristic in people, and trying to isolate a specific cause is difficult, to say the least. However, there has been a lot of news about the recent study that concluded there is “no gay gene,” and I have gotten several questions about it. As a result, I decided to read the study and share my thoughts.

First of all, it’s not surprising that there is no gay gene. In fact, researchers have said that for years. If there were a single gene that heavily influenced whether or not a person is homosexual, it would have been easy to find and discovered years ago. Also, even something as simple as the color of your eyes is governed by at least eight different genes. Thus, to think that something as complex as sexual behavior is governed by one gene is naive at best. So that specific result of the study is not even interesting, much less newsworthy. What makes the study newsworthy is its size, its scope, and the fact that its conclusions are very weak.

The study is massive in two ways. First, the main study looked at 477,522 individuals, but then it repeated the study using three smaller datasets that were composed of 15,142 individuals. Whenever you study people, the more people you have, the less uncertain your results will be. Thus, the sheer number of individuals in the study makes it important. Second, the study compared the entire genomes of the individuals. In other words, they looked at all the DNA found in the nucleus of the individuals’ cells. That’s a massive amount of data for a massive number of people!

What it tried to do is compare single nucleotide polymorphisms (SNPs) among the individuals to see if they could be correlated with sexual behavior. If you aren’t familiar with the term, SNPs are the most common variation between sets of human DNA. Genetic information comes in sequences of DNA building blocks called nucleotide bases. There are roughly three billion nucleotide bases in one strand of human DNA. An SNP is a change in one of those nucleotide bases.

Continue reading “Large Study Indicates Genetics Has Little Influence on Sexual Orientation”

Excessive Screen Time Linked to Poor Psychological Health in Children and Adolescents

A child playing with an Apple iPad
(click for credit)
Screens are everywhere. It’s very hard to avoid them. However, many health organizations recommend that parents limit the amount of screen time children and adolescents have. First, the health effects of excessive screen time have been well documented. Children who watch TV, computer, phone, and tablet screens a lot don’t exercise much. That leads to some very poor health outcomes, such as obesity. Second, a recent study indicates that there are significant negative psychological effects associated with a lot of screen time.

Psychological research is difficult for many reasons. Whenever you deal with people, you have to try to control for all sorts of variables that affect each subject, and those variables are often significantly different in different subpopulations. In addition, some of outcome measures are subjective, at best. As a result, psychological studies often have conflicting results. However, this one seems to do a good job getting over those hurdles. It contains a lot of subjects (40,337) who were randomly selected, leading to an averaging-out of at least some of the variables. Also, it used the results of the National Survey of Children’s Health (NSCH), which was done in 2016. This survey was given to the people who know the subjects best: their caregivers. It also asks a lot of fairly objective mental health questions, such as whether or not the subject was ever diagnosed with anxiety or depression.

The survey also asked the subjects’ caregivers the following questions:

a) On an average weekday, about how much time does [child’s name] spend in front of a TV watching TV programs, videos, or playing video games?

b) On an average weekday, about how much time does [child’s name] spend with computers, cell phones, handheld video games, and other electronic devices, doing things other than schoolwork?

The researchers added the results of both questions to get the total amount of screen time the subject has each weekday. They then correlated that number to the mental-health-related questions on the survey. The results were rather alarming.

Continue reading “Excessive Screen Time Linked to Poor Psychological Health in Children and Adolescents”

Another High-Profile Defection from Darwinism

Yale computer science professor Dr. David Gelernter (click for source)

The High Priests of Science continue to assure us that there is no debate when it comes to the validity of evolution as an explanation for the history of life. As the National Academy of Sciences says:

…there is no debate within the scientific community over whether evolution occurred, and there is no evidence that evolution has not occurred. Some of the details of how evolution occurs are still being investigated. But scientists continue to debate only the particular mechanisms that result in evolution, not the overall accuracy of evolution as the explanation of life’s history.

The problem, of course, is that such dogmatic statements are not consistent with the data that is supposed to guide scientific inquiry. When people honestly evaluate such data, many see how wrong the High Priests of Science are. Nearly two years ago, for example, I wrote about a world-renowned paleontologist who put up a display in his museum showing how there was no controversy about evolution. The problem, of course, is that he had never investigated all the data. When he got up the courage to actually read books written by scientists who point out the many flaws in evolutionary thinking, he ended up being convinced by the data and defected away from Darwinism. This cost him his job, but at least his scientific integrity remained intact.

Now there is another addition to the list of high-profile academics who had the courage to investigate all the data. His name is Dr. David Gelernter, and he is a professor of computer science at Yale University. In May of this year, he wrote a very interesting article for The Claremont Institute. I encourage you to read the article in its entirety, but I cannot help but add a bit of “color commentary.”

Continue reading “Another High-Profile Defection from Darwinism”

There Is Nothing Unusual About the Fires in the Amazon

Fire in the Stanislaus National Forest (not the Amazon region) in 2013 (click for credit)

I had another blog post planned for today, but I decided to put it off because over the weekend, I got three questions regarding the fires in the Amazon. People are concerned, mostly because of irresponsible articles like this one:

Brazil’s Amazon rainforest is burning at a record rate, research center says

It’s the classic example of a story that is technically true but absurdly misleading. Indeed, the National Institute for Space Research has never seen the number of forest fires that it is currently seeing in the Amazon. However, as the article notes, that research program started in 2013. So yes, over the past six years, this is the worst year yet. However, if you just broaden your scope a bit, you will see that there is nothing unusual about this year.

While the National Institute for Space Research has only been collecting data about forest fires since 2013, researchers at the Global Fire Emissions Database have been studying them since 2003. That’s almost three times as long. What do their data tell us? Well, all you have to do is go here. It gives you a handy graph that shows you the total count of fires in the Amazon region by year.

To make it stand out, I thickened the green line, which represents this year. As you can see, this year is pretty much dead center compared to the past 16 years. If you go to the link itself, you can put your cursor over the year listed under the graph, and you can see each year clearly. If you do that, you will see that 2003-2007 were all worse than this year, with 2005 setting the record. The data are actually more detailed than this. You can click on areas of the Amazon region on the left part of the website and see data for each region. If you click on “Amazonas,” for example, you will see that a few days in 2019 did set the record in that region.

It’s probably worth noting that many of these fires are caused by people…deliberately. Natural forest fires don’t happen in the Amazon region very often. Most of the fires are being set to clear land for agriculture, and most of them are not in the heavily-forested regions. Also, while you might be worried about deforestation in general, you needn’t be. The latest research indicates the earth has been getting greener since 1982.

UPDATE (08/27/2019): It does seem that there is something unusual happening in the Amazon right now. According to this source:

…the fires were at average levels through to mid August, and then there was a huge uptick.

Why was that? Seems that it started when the farmers in the state of Para declared a “‘dia do fogo,'” or “day of fire” on August 10th. They said they did this in order to show to Bolsonaro that they want to work and that the only way to clear pastures for them to work was with fire (report in Portuguese here), This was spectacularly “successful” and there was an immediate increase in fires which continued through the following weeks.

So there is unusual fire activity right now – more than the standard land-clearing fires for agricultural use. The added fires are the result of political protests.

Forbes Censors Article About a Scientist Who Is Skeptical of Climate Hysteria

Dr. Nir Shaviv speaking in Australia
Dr. Nir J. Shaviv is an astrophysicist of some renown. He has over 100 scientific papers to his credit and is currently chairman of the Racah Institute of Physics at The Hebrew University of Jerusalem. I think it’s safe to say that Dr. Shaviv knows a thing or two about science and how it is done. One of his specialties is studying the effect that cosmic rays from the sun have on the earth’s climate. So just to make it clear. Dr. Nir Shaviv is a well-respected scientist who has published peer-reviewed research specifically about earth’s climate.

Does this mean we have to believe what Dr. Shaviv says when it comes to earth’s climate? Of course not. However, it does mean that he is a recognized expert in the field. Even when I disagree with experts, I still try to pay attention to what they say and the data they produce, because they know more than I do when it comes to the issue I am investigating. Thus, while I certainly don’t have to agree with the conclusions of any given expert, I do have to at least try to understand the data the expert has collected and why he or she thinks they point to a certain conclusion. If I don’t do that, I am no longer thinking scientifically. After all, the only way you can make a scientific conclusion is to consider all of the data. Ignoring data because I don’t agree with the source is not scientific; it is emotional.

Why am I bringing this up? Because last night, I was scrolling through a news feed and noticed a Forbes article entitled, “Global Warming? An Israeli Astrophysicist Provides Alternative View That Is Not Easy To Reject.” Obviously, that title was very interesting to me, so I clicked on the link. Unfortunately, what I found was a message that said:

After review, this post has been removed for failing to meet our editorial standards.

We are providing our readers the headline, author and first paragraphs in the interest of transparency.

We regret any inconvenience.

This seemed rather odd to me, so I decided to do some digging. What I found did not reflect well on Forbes.

Continue reading “Forbes Censors Article About a Scientist Who Is Skeptical of Climate Hysteria”

One Way To See How Special Earth Is

A sample of the exoplanets “conservatively” thought to be in their star’s habitable zone, along with familiar planets for scale. (click for credit)

Thirty-five years ago, Dr. Theodore P. Snow wrote a book entitled Essentials of the Dynamic Universe. On page 434 of the 1984 edition, he summed up the obvious consequence of the idea that earth was formed as a result of natural processes without any need for Divine intervention:

We believe that the earth and the other planets are a natural by-product of the formation of the sun, and we have evidence that some of the essential ingredients for life were present on the earth from the time it formed. Similar conditions must have been met countless times in the history of the universe, and will occur countless more times in the future.

In other words, there is nothing special about the earth; it is one of many planets that harbor life. The more we learn about the universe, the more we should realize just how mediocre the earth is.

Since Dr. Snow penned those words, almost 4,000 exoplanets (planets outside our solar system) have been discovered. How many of them are similar to earth? The most reasonable answer, based on what we know right now, is zero. Why? Well, let’s consider one and only one factor: whether or not the planet is in the habitable zone of its star. That’s the distance from the star which allows the planet to get enough energy to stay warm enough to support life as we know it.

Out of nearly 4,000 exoplanets, how many are within the habitable zone? With the recent discovery of a planet charmingly known as “GJ 357 d,” the number of planets that might possibly qualify is 53. If we are conservative in our estimate, the number drops to 19, but let’s be as optimistic as possible. Out of nearly 4,000 exoplanets, only 53 might possibly be in the habitable zone.

What do I mean when I say “might possibly be in the habitable zone?” Well, there are a few factors that influence a planet’s temperature, and the distance from its star is only one of those factors. Another important issue is the planet’s atmosphere. With the right mix and right amount of greenhouse gases, a planet that is a bit far from its star could be in the habitable zone, because even though it gets only a little energy from its star, its atmosphere holds onto that energy really well. In fact, that’s why GJ 357 d might possibly be in the habitable zone. It gets about as much energy from its star as Mars does from the sun, but it is massive enough to hold on to a pretty thick atmosphere. It’s possible that the atmosphere could make up for its distance from the sun, so astronomers say it is possibly at the “outer edge” of the star’s habitable zone.

Now think about that for a moment. If we consider only one factor necessary for a planet to sustain life (being in the habitable zone of a star), just over 1% might possibly have it. Of course, there are lots of other factors necessary for life as we know it. A life-sustaining planet must also have an abundance of water, the right mixture of non-greenhouse gases in its atmosphere, the right mix of chemicals in its crust to provide nutrition to organisms, a shield from both ultraviolet rays and cosmic rays that come from the star around which it orbits, a reasonable speed of rotation around its axis, etc., etc. The earth has all these things, but a survey of nearly 4,000 exoplanets shows that just over 1% have only one of those things. What’s the chance that one of those planets has everything else it needs to support life? The most reasonable answer based on what we know is zero.

Despite what naturalists expect (and most still want to believe), it is clear that the earth is a very, very special planet. One might be so bold as to say that it is the Privileged Planet.