By Teaching, We Learn

A single-celled organism from genus Anisonema, as captured by high school student Brynna Taylor.

I have a small plaque on my wall that reads, “Docendo Discimus.” It is a Latin proverb that means, “By teaching, we learn.” The very first time I helped a friend with her homework, I realized the truth of that proverb, and it is one of the reasons I enjoy teaching so much. I love to learn, and since teaching helps me to learn, I love to teach. Part of the proverb’s truth comes from the fact that as we explain things to others, we think about them in new ways, which often leads to new insights. Over the years, however, I have found other ways that teaching helps us to learn, and I experienced one of them this past weekend.

Because of the Lord’s leading, I decided to offer some online high-school courses this year. It has been a blast teaching students from all over the U.S. as well as a handful of foreign countries. Along with the joy of teaching and getting to know students, however, comes the drudgery of grading. While I love the former, I most certainly do not love the latter. However, on Saturday, I graded lab reports from my various classes.

I started with my high school biology class, which had spent the last week or so culturing pond water and looking at samples of it under the microscope. A lab like that is “hit or miss,” because finding interesting microscopic creatures in pond water depends on a lot of factors. Some students see many organisms, while other students see few or none at all. I was in the “monotony zone,” having gone through several lab reports, when I came across a submission with an excited note attached. The student, Brynna Taylor, was thrilled with what she saw, and she just had to share a few videos with me.

The first of three videos is posted (with her permission) below. She thought the organism she was focusing on was a Euglena, and while I understood her reasoning, I quickly realized she wasn’t correct. Euglena typically have only one flagellum (a tail-like appendage used to move around), and the organism she was focusing on had two. In addition, only one seemed to be used for movement. The other was pushed out in front of the organism, almost like it was using the flagellum to sense what was ahead.

Continue reading “By Teaching, We Learn”

A Climate Skeptic’s Story

A polar bear on drift ice. (click for credit)

I was recently sent this article, which was written by a student. It’s about how she became a “climate skeptic.” It is definitely worth reading in its entirety, because it demonstrates how critical thinking can overcome indoctrination. In addition, it shows you what this critical thinking can cost, especially at the university level.

Rather than encouraging her to investigate and think for herself, her university “science” classes simply try to indoctrinate her. As she says near the end of the article:

I am disappointed by the quality of the “science” taught at University though — when theory is presented as fact, and computer models are regarded as gospel despite their infamous unreliability, it’s not actual science.

It’s propaganda—dogmatic as any religion.

Unfortunately, I have to agree with her. Even back when I was a university student, I could see examples of my “science” professors pushing propaganda on me. As a university professor, however, I have seen it become worse and worse.

But why did the student first decide to question the propaganda that was being pushed on her in the guise of science? Because of what she was being taught in middle school about global warming drowning polar bears. She was an animal “fanatic,” so she started reading about polar bears to learn more about them. In her reading, she found that they are able to swim 60 miles at a time. She asked her teacher how ice loss could harm polar bears that could swim so far. Her teacher simply told her that polar bears can’t swim that far (even though they routinely do) and then repeated the propaganda.

This caused her to start questioning what her teachers were telling her, and so she started investigating the issue of climate change for herself. As a result, she became a skeptic. Now I am sure that her middle school teacher wouldn’t want to hear this, but I think the teacher did a great service to this one student. Of course, the teacher has probably committed educational malpractice on many more students, but in the case of this one student, by simply denying the science and restating the propaganda, she taught the student to question the pronouncements that come from the high priests of science.

That’s probably the most valuable thing the student learned in middle school!

Cosmologists: Often in Error, but Never in Doubt

The history of the universe, according to the Big Bang Model.

In 2004, Dr. Simon Singh wrote a book entitled, Big Bang: The Most Important Scientific Discovery of All Time and Why You Need to Know About It. On page 265 of that book he attributes a quote to Dr. Lev Landau, a Nobel Laureate in physics. According to Singh, Landau said:

Cosmologists are often in error, but never in doubt.

Regardless of whether or not Dr. Landau actually said this, it is an insightful statement. Most cosmologists have absolutely no doubt that the Big Bang Model is an accurate description of the history of our universe. When that model seems to contradict observational data, rather than doubting the model, they add something to it in order to force it to be in compliance with the data.

For example, in 1998, some observational data indicated that the expansion of the universe is accelerating. This didn’t agree with the current interpretation of the Big Bang Model, which suggested that the rate of universal expansion should be decreasing, since gravity should be attracting all sources of mass to one another. As more and more data supported the acceleration, cosmologists started to rely on dark energy, a mysterious form of energy that counteracts the effects of gravity.

In the currently-accepted form of the Big Bang Model, just under 70% of all the energy of the universe is dark energy. Cosmologists don’t know anything about it, but most of them have no doubt that it exists, because it forces the Big Bang Model into compliance with observations. Since they have no doubts about the Big Bang Model, they have no doubts about the existence of dark energy. It’s just that simple.

Continue reading “Cosmologists: Often in Error, but Never in Doubt”

An Award-Winning Play

From left to right: Cameron Gamble, Andrew Persinger, and Natalie Gamble in “Amazing Grace.”

Six years ago, I wrote a play for church. It was called “John Newton: A Wretched and Admirable Man,” and I performed it with Chris Williams, who went home to be with the Lord earlier this year. While he was still with us here on earth, I learned about The Greenberg Playwright Competition, which was organized to seek writing talent in the state of Indiana. I talked to Chris about it, and he suggested that I submit that play.

I decided I would follow Chris’s advice, and I looked at the script, thinking I would just “tweak” it a bit and send it in. However, when I finished reading it, I thought to myself, “I remember it being better than this.” So I decided to watch the video, and I realized that it was, indeed, much better than my initial script. That’s because Chris, who played the role of Nigel Bremley, had adjusted his lines, and the other actors adjusted in response. The result was much better dialogue than what I originally wrote.

So I rewrote the script based on the video, retitled it as “Amazing Grace,” sent it in, and it won one of the categories! As a result, it was assigned a professional director, David Coolidge, and three talented actors (Cameron Gamble, Natalie Gamble, and Andrew Persinger). They worked on the script, improving it even further, and they ended up delivering an incredible performance at The Alley Theatre in Anderson, Indiana. They were all generous enough to agree to perform it the next day at my church, and I tried to get a video of it.

Churches aren’t really made for videos, so the result is not what I had hoped for. Also, one of the cameras failed, so the end of the play, which is the most dramatic part, had to be finished with a poor-quality camera. If you watch the video, you will see what I mean. Below the video, I have a link to the script. Please feel free to use it in any way you think will edify the Body of Christ, but I do request a credit as the author.

Amazing Grace: The Script

A Positive Step for Science

A man holds a sign at the International Science March outside Humbolt University (Berlin) on April 22nd, 2017. (click for credit)

When I submit a paper to a scientific journal, it is reviewed by experts in the field before it is published. The experts might say that the paper should be published as it is. They might say that the paper should be published, but certain changes should be made to either make it more consistent with what we know or to provide better context for understanding the results that are being presented. The reviewers might say that the article shouldn’t be published, because it contains poor science or because the results aren’t important. This is the process of peer review.

I have been on both sides. I have submitted papers for publication that went through peer review, and I have been a peer reviewer for scientific journals in my area of expertise. Although neither process is particularly enjoyable, I think it is a very important part of science. Indeed, even though it is not required, I have all of my science texts reviewed by at least two experts before they are sent to the publisher. These experts often catch errors that I have made, and they also add valuable comments that allow me to improve the way I discuss certain topics. My textbooks are significantly better because they are peer-reviewed.

Of course, there is also a problem with peer review. It can lead to the suppression of scientific results for unscientific reasons. I have experienced this personally. I recall one paper that my collaborators and I submitted to a nuclear physics journal. It was rejected by the peer reviewers, and the journal said that it would not be published. We looked at the reports of the peer reviewers and showed the editor that the reviewers’ objections were without merit. The journal agreed to send it to two more peer reviewers, who both accepted it with only minor corrections.

Continue reading “A Positive Step for Science”

Sometimes, It’s the “Deniers” Who Are Right!

Nobel Laureate Dr. Daniel Shechtman
(click for credit)
Nearly six years ago, I wrote about Dr. Daniel Shechtman. He had recently won the Nobel Prize in chemistry, and I wanted to highlight him because had the term been popular in his day, he would have been called a chemistry denier. His own research demonstrated the existence of quasicrystals, despite the fact that the science of the day said (quite conclusively) that they couldn’t possibly exist. He faced a lot of opposition from his fellow scientists, even though all he was doing was following the data.

Although the term “denier” wasn’t fashionable at the time, two-time Nobel Laureate Dr. Linus Pauling famously said:

There is no such thing as quasicrystals, only quasi-scientists.

Despite the fact that the head of his own research group asked him to leave because of “bringing disgrace” to the team, Dr. Shechtman persevered, and he was eventually vindicated. Even though science conclusively said that quasicrystals don’t exist, Dr. Schechtman showed that they did.

I recently learned from one of my chemistry colleagues that the Royal Swedish Academy of Sciences wrote an article about Dr. Schechtman’s story. It is called Crystals of Golden Proportion, and if you have any interest in chemistry, you might find it worth the read. I certainly did.

The article discusses the ridicule Dr. Schechtman received from his fellow scientists, and then it makes this statement:

Dan Shechtman’s story is by no means unique. Over and over again in the history of science, researchers have been forced to do battle with established “truths”, which in hindsight have proven to be no more than mere assumptions…Keeping an open mind and daring to question established knowledge may in fact be a scientist’s most important character trait.

I have said the same things many times. Unfortunately, this obvious truth is lost on most people, including most scientists. If a scientist dares to question established truth, he or she is immediately labeled a “denier.” If you point out the uncertainty in our understanding of global climate, you are a “climate change denier.” If you question the “accepted” age of the earth, or flagellate-to-philosopher evolution, you are a “science denier.” As the Royal Swedish Academy of Sciences admits, however, the “deniers” are right in many cases, and established scientific “truths” are sometimes just incorrect assumptions.

Science would be better served if more people (including more scientists) understood this.

One of the Most Important Aspects of Global Climate Is Still Completely Undetermined

Proxy temperature record (blue) and this study’s projection (orange) for the Northern Hemisphere.

One of the least understood things about global warming (aka “climate change”) is how much of it can be caused by people. Several studies have attempted to answer this question, and they produce radically different results. Some indicate that human industry is one of the most important factors in how global temperatures are changing. Other studies conclude that human industry has a very small effect on global temperatures. Who is right? I don’t know, and I honestly don’t think anyone does.

How can I say that? Because I read the scientific literature and use the information I find there to draw my conclusions. The information in the scientific literature has little relationship to the nonsense that is peddled in the media and most of today’s institutions of education. The fact is that no one understands some of the very basic aspects of climate, and a recent study highlighted this in an enlightening way.

The study is interesting in its own right, because it attempted to use artificial neural networks (ANNs) to “learn” about how climate changes naturally. I have no idea how reasonable their method is, but it did produce some interesting results. More importantly, the paper presented a table that shows exactly how little we currently understand about the way carbon dioxide affects global temperatures.

Continue reading “One of the Most Important Aspects of Global Climate Is Still Completely Undetermined”

The Current Hurricane Activity is Not Unusual From a Scientific Perspective

NOAA’s GOES satellite image on Sept. 8, 2017. It shows Hurricane Irma (Caribbean Sea), Tropical Storm Jose (Atlantic Ocean), and Tropical Storm Katia (Gulf of Mexico).

Hurricane Harvey devastated Texas, and hurricane Irma is currently pummeling Florida. In Texas, the death toll is at least 70, and so far, Irma has killed five people. In addition, two other tropical storms are brewing, one in the Atlantic ocean and one in the Gulf of Mexico. Reading social media and the less-responsible news outlets, you would think that this kind of weather is unprecedented. You would also think that it is all the result of carbon dioxide emissions causing global warming, aka “climate change.” While the human devastation is real and cannot be ignored, science tells us that these events are not unusual, and they are probably not related to human activity in any way.

Let’s start with hurricane Irma. Unlike you may have been told, it is not the most powerful hurricane that has been observed. In fact, that distinction belongs to hurricanes Patricia (2015) and Nancy (1961), which each occurred in the Pacific ocean. Their winds of 215 miles per hour are the highest ever recorded. Of course, Pacific hurricanes do tend to be pretty strong, but Irma isn’t even the most powerful Atlantic hurricane. Allen in 1980 had the highest wind speeds of any Atlantic hurricane (190 mph). Currently, Irma (with wind speeds of 185 mph) is tied for second, along with Wilma in 2005, Gilbert in 1988, and the Labor Day Hurricane of 1935.

But what about three hurricanes in the Atlantic at one time. Surely that’s unprecedented! Nope. In 1998, there were four Atlantic hurricanes at once. Indeed, three hurricanes at once is something that happens roughly every 10 years. Why haven’t you heard that? One reason is that all three rarely make landfall in populated areas. The other reason is that it doesn’t help with the “global warming is going to kill us all” narrative.

But surely global warming is contributing to these hurricanes in some way. Well, if it is, there is certainly no way you could tell that from the data.

Continue reading “The Current Hurricane Activity is Not Unusual From a Scientific Perspective”

These Footprints Will Probably Inspire Some Impressive Storytelling

Two of the recently-discovered hominin-like footprints that are thought to be too old and in the wrong place.

The Smithsonian Museum of Natural History tells us the story of human evolution as if it has all been figured out:

One of the earliest defining human traits, bipedalism — the ability to walk on two legs — evolved over 4 million years ago. Other important human characteristics — such as a large and complex brain, the ability to make and use tools, and the capacity for language — developed more recently…Early humans first migrated out of Africa into Asia probably between 2 million and 1.8 million years ago. They entered Europe somewhat later, between 1.5 million and 1 million years.

Of course, any serious scientist knows that what little data we have on such matters don’t support the confident tone used by the Smithsonian. Indeed, a recent study published in Proceedings of the Geologists’ Association indicates that at least some of what The Smithsonian Museum of Natural History says is wrong.

The study focuses on several footprints (two of which are shown above). The authors say that the footprints most likely come from a hominin, which is a general term that refers to humans and their supposed evolutionary ancestors. Why do they think the tracks belong to a human ancestor? They state:

The tracks indicate that the trackmaker lacked claws, and was bipedal, plantigrade, pentadactyl and strongly entaxonic.

As far as we know, this set of characteristics appears only in humans and their supposed evolutionary ancestors.

Continue reading “These Footprints Will Probably Inspire Some Impressive Storytelling”

Trigonometry from The 18th Century BC!

Plimpton 322, a mathematical table that is thought to have been made about 1800 BC.

Back in 1922, G.A. Plimpton bought the tablet shown above from an archaeologist named Edgar Banks, and it has become known as “Plimpton 322.” According to an analysis of the writing, it is of Babylonian origin and probably dates back to the 18th-century BC. It has been known for a while that Plimpton 322 is a mathematical table that contains ratios related to triangles. However, there were aspects of the table that didn’t make sense, at least until recently. According to a study published in Historia Mathematica, it is actually the world’s oldest trigonometry table!

For those of you who didn’t take (or don’t remember) trignonometry, it is a branch of mathematics that deals with triangles. I was first introduced to it in high school, as part of my “college preparatory” mathematics education. One thing that initially struck me about this branch of mathematics was the fact that there were times you had to use a lookup table (or a calculator) in order to get the results you needed. I had never before done math like that. Sure, calculators made some math faster and certainly cut down on errors. However, for some trigonometry problems, you simply couldn’t get the answer without looking up numbers in a table or using a calculator.

Once I studied chemistry and physics at university, trigonometry became a pretty constant companion. In physics, you use it to analyze vectors, which are one of the most fundamental aspects of that scientific discipline. In chemistry, you use it to study molecular structure. Over time, I got really adept at using my calculator to solve trigonometry-related problems. Interestingly enough, however, this tablet represents a completely different means by which you can do trigonometry.

Continue reading “Trigonometry from The 18th Century BC!”